J L S T an all a o AIA.
AL MUSTAQBAL UNIVERSITY

DEPARTMENT OF CYBER SECURITY
SUBJECT:
OBJECT ORIENTED PROGRAMMING (OOP)
CLASS:
SECOND
LECTURER:

DR. ABDULKADHEM A. ABDULKADHEM

LECTURE: (4)
OBJECTS AND MEMBER FUNCTIONS
IN OBJECT-ORIENTED
PROGRAMMING




Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

1. Objects and Member Access:

Objects are instances of a class, and through them, we can access the class’s
members (both attributes and functions). The two key concepts related to member
access are:

1. Public Members: Accessible from outside the class.
2. Private Members: Accessible only from within the class.

When using objects, we access class members using the dot operator (.) for direct
member access, or through member functions which are responsible for interacting
with private data.

Example:

#include <iostream>
using namespace std;

string name;
int age;
void displaylInfo() {
cout << "Name: " << name << ", Age: " << age << endl;
¥
¥

int main() {
Student studentl;
studentl.name = "Alice";
studentl.age = 20;
studentl.displaylInfo(); // Accessing member function
return O;

¥

Explanation:

« We define a Student class with two public members (name and age).

Page |2




Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

The displaylnto() function 1s a member function that prints the values of the
name and age attributes.

In main(), we create a Student object (studentl) and access its members
using the dot operator. We call displaylnfo() to display the student’s
information.

2. Defining Member Functions:
There are two ways to define member functions in C++:

1. Inside the class (Inline functions): Member functions defined directly
inside the class body.

2. Outside the class (Using scope resolution): Member functions defined
outside the class using the scope resolution operator ::.

Example (Member Function Defined Inside Class):

#include <iostream>
using namespace std;
class Rectangle {

int length, width;

void setDimensions(int I, int w) {
length = I;
width = w;

}

int calculateArea() {
return length * width;

b
2
int main() {
Rectangle rect;
rect.setDimensions(5, 10);
cout << "Area: " << rect.calculateArea() << endl;
return O;

¥

Explanation:

Page |3




Department of Cyber Security Lecturer Name

Object Oriented Programming — Lecture (4)

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

The setDimensions() function sets the values for length and width attributes,
while calculateArea() computes the area.

. Both member functions are defined inside the class itself, making them
inline functions.

Example (Member Function Defined Outside Class):

#include <iostream>
using namespace std;
class Circle {

double radius;

public:
void setRadius(double r);
double calculateArea();

\};oid Circle::setRadius(double r) {
radius =r;

¥

double Circle::calculateArea() {
return 3.14 * radius * radius;
¥

int main() {
Circle circle;
circle.setRadius(7);
cout << "Area of the circle: " << circle.calculateArea() << endl;
return O;

¥

Explanation:

« The setRadius() and calculateArea() functions are defined outside the class
using the scope resolution operator ::.

This is useful when you want to keep the class definition clean, especially
for large functions.




Department of Cyber Security Lecturer Name

Object Oriented Programming — Lecture (4)
Dr. Abdulkadhem A. Abdulkadhem

Vs, R )
2% 9
) 393100

Second Stage

3. Object as Function Arguments:

In C++, you can pass objects as arguments to functions in two ways:

1. By Value: The object is copied, and any changes made inside the function
do not affect the original object.

2. By Reference: The original object is passed, allowing the function to
modify its contents.

Example of Passing Objects by Value:

#include <iostream>
using namespace std;

class Book {
public:
string title;
Int pages;
void setDetails(string t, int p) {
title = t;
pages = p;
¥
void display() {
cout << "Title: " << title << ", Pages: " << pages << endl;
¥
2
void printBook(Book b) { // Object passed by value
b.title = "New Title";
b.display(); /I Changes do not affect the original object

¥

int main() {
Book book1;
book1.setDetails("C++ Programming", 350);
printBook(bookl);  // Passing by value
bookl.display();  // Original object remains unchanged

return O;

¥

Page |5




Department of Cyber Security

Lecturer Name
Object Oriented Programming — Lecture (4)

Y« Dr. Abdulkadhem A. Abdulkadhem
> Second Stage
Explanation:

IT
“‘\\QER'S Y
2) g gl
‘9403931103

Y

« In printBook(), the Book object is passed by value. The function receives a

copy of the object, so changes made inside printBook() do not affect the
original book1 object.

Example of Passing Objects by Reference:

#include <iostream>
using namespace std;

class Book {
public:
string title;
Int pages;
void setDetails(string t, int p) {
title = t;
pages =p,
b
void display() {
cout << "Title: " << title << ", Pages: " << pages << endl;
¥
¥
void modifyBook(Book &b) { // Object passed by reference
b.title = "Advanced C++";
¥

int main() {
Book book1,;
book1.setDetails("C++ Programming", 350);
modifyBook(book1);  // Passing by reference

book1.display(); /I The original object is modified
return O;

¥

Explanation:

. In modifyBook(), the Book object is passed by reference. Any changes

made inside the function affect the original bookl object, as demonstrated
by the change in the title.

Page |6




Department of Cyber Security Lecturer Name

Object Oriented Programming — Lecture (4)

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

4. Object as Return Type:

A function can also return an object. This is useful when we want to return a
modified object or create new objects within a function.

Example of Object as Return Type:

#include <iostream>
using namespace std;

class Complex {
private:
int real, imag;

public:
void setValues(int r, int i) {
real =r;
imag = i;

k

void display() {
cout << "Complex number: " << real << " + " << imag << "i" << endl;

k

Complex add(Complex c¢) {
Complex result;
result.real = real + c.real;
result.imag = imag + c.imag;
return result;
}
Y

int main() {
Complex c1, c2, sum;
cl.setValues(3, 4);
c2.setValues(5, 6);

sum = cl.add(c2); // Returning an object from the function

Page |7




Department of Cyber Security Lecturer Name

Object Oriented Programming — Lecture (4)

2%
) 393100

Dr. Abdulkadhem A. Abdulkadhem

£

Second Stage

(58

sum.display(); // Displaying the result
return O;

ks

Explanation:

« The add() function returns a new Complex object that represents the sum of
two complex numbers.

« This demonstrates how functions can create and return new objects.
5. Conclusion:

Member Access: Objects access class members via the dot operator or
member functions.

Defining Member Functions: Functions can be defined either inside or
outside the class.

Objects as Function Arguments: Objects can be passed by value (copies

the object) or by reference (modifies the original object).

Objects as Return Type: Functions can return objects, enabling more
flexible manipulation of class instances.

Questions about the lecture

. What operator is used to access members (attributes or functions) of an object in C++?
. What is the difference between public and private members in a class?
. What keyword or concept allows functions to access private data members indirectly?
. When a member function is defined inside a class, what type of function is it considered?
. Which operator is used to define a member function outside the class body?
. What happens when an object is passed by value to a function?
. What happens when an object is passed by reference to a function?
In the given comp1ex class example, what is the return type of the ada () function?
Why might a programmer prefer defining member functions outside the class body?
0 How does returning an object from a function enhance flexibility in C++ programming?




