| &1 I a -
AL MUSTAQBAL UNIVERSITY

A\ | W ” \
Y P v, p

Department of Cyber Security

Subject: Data Structure
Class: Second

Lecturer: Msc :Muntather AL-mussawee

Lecture: (8)

Implementation of Linked List

Implementation of Linked List in C++
To implement a linked list in C++ we can follow the below approach:

Approach:

« Define a structure Node having two members data and a
next pointer. The data will store the value of the node and
the next pointer will store the address of the next node in
the sequence. For doubly linked list you will have to add an
addition pointer prev that will store the address of the prev
node in the sequence.

« Define a class LinkedList consisting of all the member
functions for the LinkedList and a head pointer that will
store the reference of a particular linked list.

« Initialize the head to NULL as the linked list is empty
initially.

o Implement basic functions like insertAtBeginning,
insertAtEnd, deleteFromBeginning, deleteFromEnd that

will manipulate the elements of the linked list.

Representation of a Node in the Linked List
Each node of the linked list will be represented as a structure having
two members data and next where:

« Data: Represents the value stored in the node.

« Next Pointer: Stores the reference to the next node in the

sequence.

https://www.geeksforgeeks.org/data-structures/linked-list/
https://www.geeksforgeeks.org/structures-c/

struct Node {
int data;
Node* next;

}s

Note: Add another data member Node * previn the structure

for doubly linked lists.

Algorithm for insertAtBeginning Implementation

1. Create a new Node

2. Point the new Node's next pointer to the current head.
3. Update the head of the linked list as the new node.

HEAD

)

NEXT J%[Z NEXT J%NULL

New Node | NEXT

Inserting a node at the first of the linked list

Algorithm for insertAtEnd Implementation

1. Create a new Node

2. Ifthe linked list is empty, update the head as the new

node.

3. Otherwise traverse till the last node of the linked list.
4. Update the next pointer of the last node from NULL to

new node.

[X NEXT H Y NEXT H Z

NEXT FN%

Inserting a node at the end of the linked list

ode | NEXT I%NULL

https://www.geeksforgeeks.org/data-structures/linked-list/doubly-linked-list/

Algorithm for insertAtPosition Implementation
1. Check if the provided position by the user is a valid
poistion.
2. Create a new node.
3. Find the node at position -1.
. Update the next pointer of the new node to the next
pointer of the current node.
5. Update the next pointer of the current node to new node.

N

HEAD

[X NEXT H Y NEXT %[Z NEXT J%NULL
ﬂ\lewNode NEXT }
k.

Inserting a node after the second position in the linked list

Algorithm for deleteFromBeginning Implementation
1. Check whether the Head of the linked list is not NULL. If
Head is equal to NULL return as the linked list is empty,
there is no node present for deletion.
2. Store the head of the linked list in a temp pointer.
3. Update the head of the linked list to next node.
4. Delete the temporary node stored in the temp pointer.

HEAD

[X NEXT NG @%{ Z NEXT FNULL

/

* TEMP
Deleting the first node of the linked list

Algorithm for deleteFromEnd Implementation

. Verify whether the linked is empty or not before deletion.

2. Ifthe linked list has only one node, delete head and set
head to NULL.

3. Traverse till the second last node of the linked list.

4. Store the last node of the linked list in a temp pointer.

5. Pointer the next pointer of the second last node to NULL.

6. Delete the node represented by the temp pointer.

~\

HEAD
[X NEXTH Y | next jﬁé[Z | NExT FNULL
L S.NuLL T
* TEMP

Deleting the last node of the linked list

Algorithm for deleteFromPosition Implementation

. Check if the provided postion by the users is a valid
position in the linked list or not.

2. Find the node at position -1.

3. Save node to be deleted in a temp pointer.

4. Set the next pointer of the current node to the next pointer

of the node to be deleted.
5. Set the next pointer of temp to NULL.
6. Delete the node represented by temp pointer.

A

HEAD

[X NEXT M Y NEXT Jﬁ%{ Z NEXT]%NULL

N

* TEMP

Deleting the node present at the second position in the linked list

Algorithm for Display Implementation
1. Check if the Head pointer of the linked list is not equal to
NULL.
2. Set a temp pointer to the Head of the linked list.
3. Until temp becomes null:
1. Print temp->data
2. Move temp to the next node.

C++ Program for Implementation of Linked List
The following program illustrates how we can implement a singly
linked list data structure in C++:

#include <iostream>
using namespace std;
// Structure for a node in the linked list
struct Node {
int data;
Node* next;
¥
// Function to insert a new node at the beginning of the list
void insertAtBeginning(Node*& head, int value) {
Node* newNode = new Node();
newNode->data = value;
newNode->next = head;
head = newNode;
}
// Function to insert a new node at the end of the list

void insertAtEnd(Node*& head, int value) {

Node* newNode = new Node();
newNode->data = value;
newNode->next = NULL;
if ('head) {
head = newNode;
return;
}
Node* temp = head;
while (temp->next) {
temp = temp->next;
}
temp->next = newNode;
}
// Function to insert a new node at a specific position in the list
void insertAtPosition(Node*& head, int value, int position) {
if (position < 1) {
cout << "Position should be >=1." << end|;
return;
}
if (position ==1) {
insertAtBeginning(head, value);
return;
}
Node* newNode = new Node();

newNode->data = value;

}

Node* temp = head,;

for (inti=1;i< position - 1 && temp; ++i) {
temp = temp->next;

}

if (1temp) {
cout << "Position out of range." << endl;
delete newNode;
return;

}

newNode->next = temp->next;

temp->next = newNode;

// Function to delete the first node of the list

void deleteFromBeginning(Node*& head) {

}

if ('head) {
cout << "List is empty." << end|;

return;

}
Node* temp = head;

head = head->next;

delete temp;

// Function to delete the last node of the list
void deleteFromEnd(Node*& head) {

if ('head) {

cout << "Listis empty." << endl;
return;
}
if (lhead->next) {
delete head;
head = NULL;

return;

Node* temp = head;
while (temp->next->next) {
temp = temp->next;
}
delete temp->next;
temp->next = NULL,;
}
// Function to delete a node at a specific position in the list
void deleteFromPosition(Node*& head, int position) {
if (position < 1) {
cout << "Position should be >=1." << end|;
return;
}
if (position ==1) {
deleteFromBeginning(head);

return;

}

// Function to display the nodes of the linked list

}
Node* temp = head,;

for (inti=1;i< position - 1 && temp; ++i) {
temp = temp->next;

}

if (ltemp || 'temp->next) {
cout << "Position out of range." << endl;
return;

}

Node* nodeToDelete = temp->next;

temp->next = temp->next->next;

delete nodeToDelete;

void display(Node* head) {

if (head) {
cout << "Listis empty." << endl;
return;

}

Node* temp = head;

while (temp) {
cout << temp->data<<"->";
temp = temp->next;

}

cout << "NULL" << endl;

}

int main() {
Node* head = NULL;
// Insert elements at the end
insertAteEnd(head, 10);
insertAtEnd(head, 20);

// Insert element at the beginning

insertAtBeginning(head, 5);

// Insert element at a specific position
insertAtPosition(head, 15, 3);
cout << "Linked list after insertions: ";

display(head);

// Delete element from the beginning
deleteFromBeginning(head);
cout << "Linked list after deleting from beginning: ";

display(head);

// Delete element from the end
deleteFromEnd(head);
cout << "Linked list after deleting from end: ";

display(head);

// Delete element from a specific position
deleteFromPosition(head, 2);

cout << "Linked list after deleting from position 2: ";
display(head);

return O;

	Implementation of Linked List in C++
	Algorithm for insertAtBeginning Implementation
	C++ Program for Implementation of Linked List

