

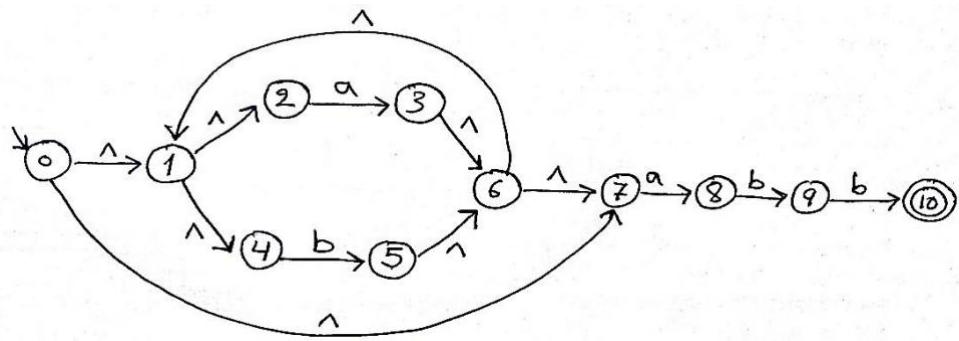
جامعة المستقبل
AL MUSTAQBAL UNIVERSITY

قسم الامن السيبراني
DEPARTMENT OF CYBER SECURITY

SUBJECT: COMPUTATION THEORY
CLASS: 3rd

LECTURER: MSc :MUNTATHER AL-MUSSAWEE

LECTURE: (4)


EQUIVALENCE OF NFA AND DFA

Convert Nondeterministic Finite Automaton(NFA)

to Deterministic Finite Automaton(DFA)

Example: Convert the following NFA to its equivalent DFA:

$$A = \{0, 1, 2, 4, 7\}$$

$$T(A, a) = \{1, 2, 3, 4, 6, 7, 8\} = B$$

$$T(A, b) = \{1, 2, 4, 5, 6, 7\} = C$$

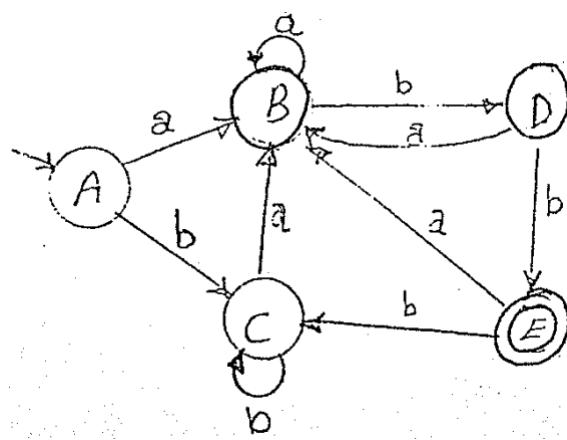
$$T(B, a) = \{1, 2, 3, 4, 6, 7, 8\} = B$$

$$T(B, b) = \{1, 2, 4, 5, 6, 7, 9\} = D$$

$$T(C, a) = \{1, 2, 3, 4, 6, 7, 8\} = B$$

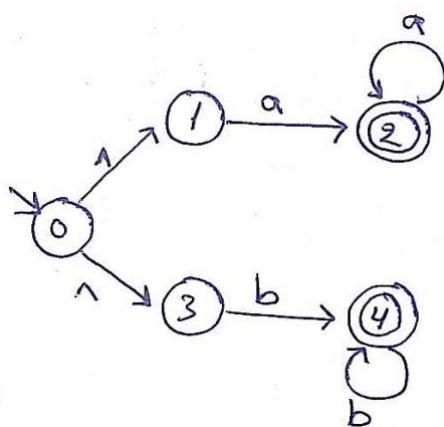
$$T(C, b) = \{1, 2, 4, 5, 6, 7\} = C$$

$$T(D, a) = \{1, 2, 3, 4, 6, 7, 8\} = B$$


$$T(D, b) = \{1, 2, 4, 5, 6, 7, 10\} = \textcircled{E}$$

$$T(E, a) = \{1, 2, 3, 4, 6, 7, 8\} = B$$

$$T(E, b) = \{1, 2, 4, 5, 6, 7\} = C$$


Transition Table

	a	b
A	B	C
B	B	D
C	B	C
D	B	E
E	B	C

DFA Transition Graph

Homework: Convert the following NFA to its equivalent DFA:

Finite State Machines with Output (Moore and Mealy Machines)

Moore Machines

A Moore machine is a collection of five things:

- A finite set of states q_0, q_1, q_2, \dots where q_0 is designated as the start state.
- An alphabet of letters for forming the input string

$$\Sigma = \{a, b, c, \dots\}.$$

- An alphabet of possible output characters

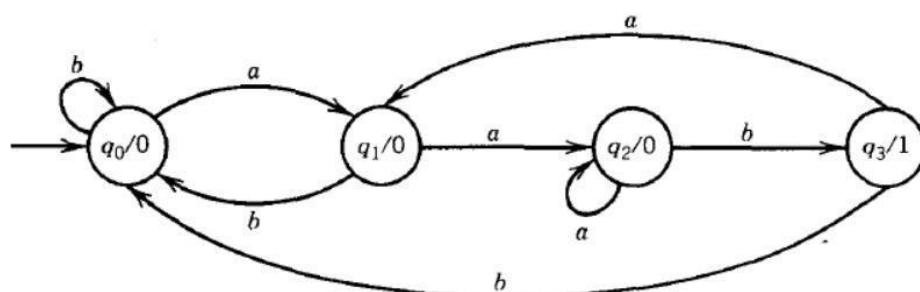
$$\Gamma = \{x, y, z, \dots\}.$$

- A transition table that shows for *each* state and *each* input letter what state is reached next.
- An output table that shows what character from Γ is printed by each state that is entered.

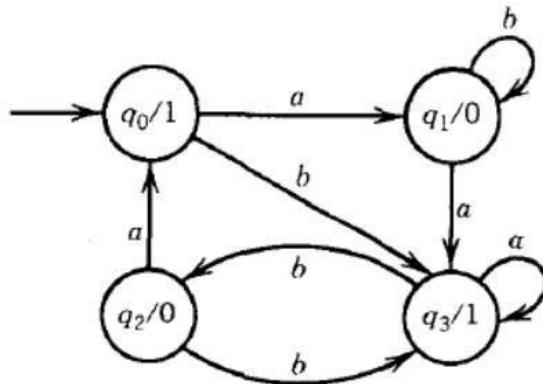
A Moore machine is very similar to a Finite Automaton (FA), with a few key differences:

- It has no final states.
- It does not accept or reject input, instead, it generates output from input.
- Moore machines cannot have nondeterministic states.

Example:


Input alphabet: $\Sigma = \{a, b\}$

Output alphabet: $\Gamma = \{0, 1\}$


Names of states: q_0, q_1, q_2, q_3 , (q_0 = start state)

Input string: aaababbaabb

Input string		a	a	a	b	a	b	b	a	a	b	b
State	q_0	q_1	q_2	q_2	q_3	q_1	q_0	q_0	q_1	q_2	q_3	q_0
Output	0	0	0	0	1	0	0	0	0	0	1	0

Homework: Trace the operation of the following machine on the input string *abab*.

Mealy Machine

A Mealy machine is a collection of four things:

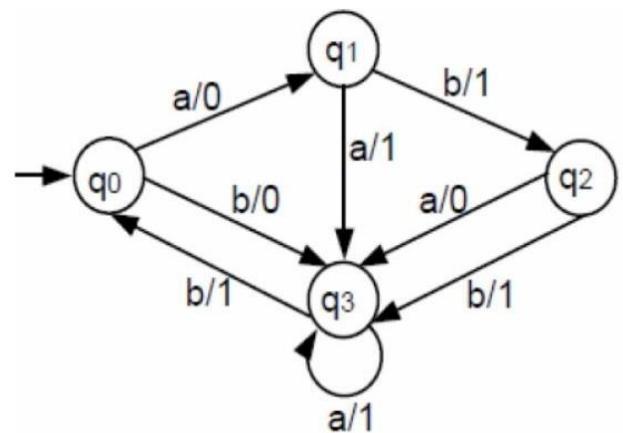
- A finite set of states q_0, q_1, q_2, \dots where q_0 is designated as the start state.
- An alphabet of letters for forming the input string

$$\Sigma = \{a, b, c, \dots\}$$
- An alphabet of possible output characters

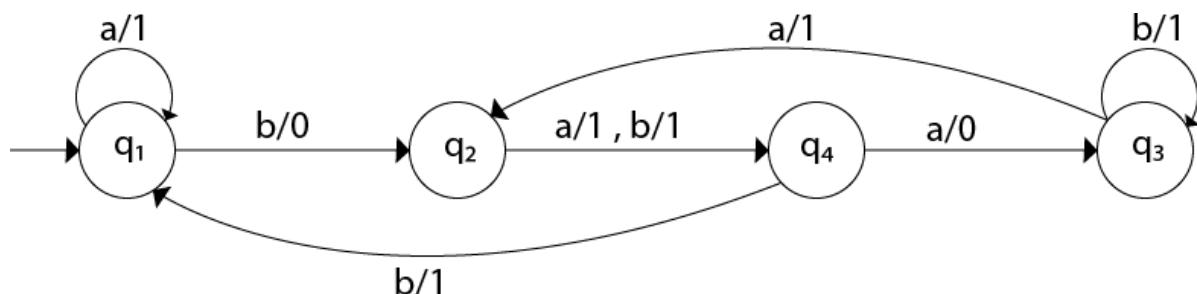
$$\Gamma = \{x, y, z, \dots\}$$
- A pictorial representation with states represented by small circles and directed edges indicating transitions between states. Each edge is labeled with a compound symbol of the form i/o where i is an input letter and o is an output character. Every state must have exactly one outgoing edge for each possible input letter. The edge we travel is determined by the input letter i ; while traveling on the edge we must print the output character o .

☞ Notice that in a Mealy machine the output string has the same number of characters as the input string has letters.

Example:


Input alphabet: $\Sigma = \{a, b\}$

Output alphabet: $\Gamma = \{0, 1\}$


Names of states: q_0, q_1, q_2, q_3 , (q_0 = start state)

Input string: aaabb

Input string	a	a	a	b	b
Output	0	1	1	1	0

Homework: Trace the operation of the following machine on the input string *ababbbababa*.

