J L S T an all a o AIA.
AL MUSTAQBAL UNIVERSITY

DEPARTMENT OF CYBER SECURITY
SUBJECT:
OBJECT ORIENTED PROGRAMMING (OOP)
CLASS:
SECOND
LECTURER:

DR. ABDULKADHEM A. ABDULKADHEM

LECTURE(10):

Inheritance in OOP (part 2)




Department of Cyber Security
Lecturer Name
Object Oriented Programming — Lecture (10)

2
%0 39371100

Dr. Abdulkadhem A. Abdulkadhem

%

Second Stage

Objective of the Lecture:

In this lecture, we will cover the five primary types of inheritance in object-oriented
programming (OOP), explain their characteristics, and provide examples for each type.

What is Inheritance?

Inheritance is a fundamental concept in OOP, allowing a class (derived class) to acquire the
properties and methods of another class (base class). It enables code reuse, extends functionality,
and supports a hierarchical classification.

Inheritance allows us to create new classes based on existing ones, enabling us to:

e Reuse code.
o Extend functionality.
« Establish a hierarchical relationship between classes.

There are different types of inheritance, Single Inheritance, Multiple inheritance, Multilevel
inheritance, hybrid inheritance and hierarchical inheritance. The following figure represents the
different types of inheritance.

l_I

| . 2
Single Inheritance Jf—, l Multiple Inheritance
B

Hybrid Inheritance

HierarchicalInheritance

Multilevel Inheritance

Page |2




“‘\\‘Q_RSWY

&

Department of Cyber Security Lecturer Name

Object Oriented Programming — Lecture (10)
Dr. Abdulkadhem A. Abdulkadhem
Second Stage

2%
) 393100

K

(58

1. Single Inheritance

Definition: In single inheritance, a derived class inherits from a single base class. It

allows the derived class to inherit the properties and methods of one parent class.
Characteristics:

o One base class.
o One derived class.
o Simple and straightforward inheritance.

Example of Single Inheritance:

#include <iostream>
using namespace std;
// Base class representing a Person
class Person {
public:
void displayInfo () {
cout << "This is a Person class" << endl;
}
}i
// Derived class representing a Student, inheriting from Person
class Student : public Person ({
public:
void displayStudentInfo () {
cout << "This is a Student class" << endl;
}
}i

int main () {
Student studentObj;

studentObj.displayInfo () ; // Inherited from Person class

studentObj.displayStudentInfo () ; // Function in Student class
return 0;

2. Multiple Inheritance

« Definition: Multiple inheritance occurs when a derived class inherits from more than

one bhase class. The derived class inherits attributes and methods from all the base classes.
e Characteristics:

o One derived class inherits from multiple base classes.

o Can result in ambiguity if there are overlapping member functions or attributes in
the base classes.

Example of Multiple Inheritance:

#include <iostream>

using namespace std;

// Base class representing a Person
class Person {

Page |3




Department of Cyber Security Lecturer Name

Object Oriented Programming — Lecture (10)

Q‘\\qE_RS‘TY

&

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

string name;
int age;

void setInfo(string n, int a) {
name = n;
age = a;
}
void displayPersonInfo () {
cout << "Name: " << name << endl;
cout << "Age: " << age << endl;
}
}i
// Base class representing Academic information
class Academic {
public:
string Dept;
float GPA;

void setAcademicInfo (string m, float g) {
Dept = m;
GPA = g;

}

void displayAcademicInfo () {
cout << "Dept: " << Dept << endl;
cout << "GPA: " << GPA << endl;

bi

// Derived class representing a Student, inheriting from Person and Academic
class Student : public Person, public Academic {
public:
void displayStudentInfo () {
cout << "Student Information: " << endl;
displayPersonInfo () ; // From Person class
displayAcademicInfo () ; // From Academic class

b

int main () {
Student studentOb7j;

// Setting information from both base classes

studentObj.setInfo ("Ali Mohammad", 20); // From Person class

studentObj.setAcademicInfo ("Computer Science", 32.75); // From
Academic class

// Displaying student information
studentObj.displayStudentInfo () ; // From Student class
return 0;

Output:

Student Information:
Name: John Doe

Age: 20

Dept: Computer Science
GPA: 3.75




Department of Cyber Security Lecturer Name

Object Oriented Programming — Lecture (10)
Dr. Abdulkadhem A. Abdulkadhem

Second Stage

3. Hierarchical Inheritance

Definition: In hierarchical inheritance, multiple derived classes inherit from a single
base class. All derived classes share the properties and methods of the base class.
Characteristics:

o One base class.

o Multiple derived classes.

o Common functionality can be reused across derived classes.

Example of Hierarchical Inheritance:

#include <iostream>
using namespace std;

// Base class representing a Player
class Player {
public:

string name;

int age;

// Constructor to initialize player details
Player (string n, int a) {

name = n;

age = a;

}

// Function to display general player information
void displayInfo () {
cout << "Name: " << name << endl;
cout << "Age: " << age << endl;
}
bi
// Derived class representing a Football Player
class FootballPlayer : public Player ({
public:
string team;
int goalsScored;

// Constructor to initialize football player details
FootballPlayer (string n, int a, string t, int g) : Player(n, a) {
team = t;
goalsScored = g;

}

// Function to display football player-specific information

void displayFootballInfo () {
displayInfo(); // Calling base class function to display general player info

cout << "Team: " << team << endl;
cout << "Goals Scored: " << goalsScored << endl;

I

// Derived class representing a Basketball Player
class BasketballPlayer : public Player {

Page |5




Department of Cyber Security Lecturer Name

371100

Object Oriented Programming — Lecture (10)

Von &
2
S0 39

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

string team;
int pointsScored;

// Constructor to initialize basketball player details
BasketballPlayer (string n, int a, string t, int p) : Player(n, a) {
team = t;
pointsScored = p;

}

// Function to display basketball player-specific information

void displayBasketballInfo () {
displayInfo(); // Calling base class function to display general player info
cout << "Team: " << team << endl;
cout << "Points Scored: " << pointsScored << endl;

main () {

// Creating a FootballPlayer object

FootballPlayer footballPlayer ("Messi", 35, "Red Team", 15);

cout << "Football Player Information: " << endl;
footballPlayer.displayFootballInfo(); // Display FootballPlayer details

cout << endl;

// Creating a BasketballPlayer object

BasketballPlayer basketballPlayer ("Mike", 28, "Blue Team", 200);

cout << "Basketball Player Information: " << endl;
basketballPlayer.displayBasketballInfo(); // Display BasketballPlayer details
return 0O;

Output:

Football Player Information:
Name: Messi

Age: 35

Team: Red Team

Goals Scored: 15

Basketball Player Information:
Name: Mike

Age: 28

Team: Blue Team

Points Scored: 200

Explanation:

® footballPlayer and basketballPlayer are objects of the derived classes FootballPlayer
and BasketballPlayer, respectively.

e Both objects can access the common functionality of the p1ayer base class (like name and
age), as well as their own specific data (like team and goalsscored for football, or team and
pointsscored for basketball).

4. Multilevel Inheritance




Department of Cyber Security Lecturer Name

Object Oriented Programming — Lecture (10)

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

Definition: In multilevel inheritance, a derived class becomes the base class for another
derived class. Essentially, one class inherits from another, which in turn inherits from
another.
Characteristics:

o A class inherits from another derived class.

o Forms a chain of inheritance.

Example of Multilevel Inheritance:

#include <iostream>
using namespace std;

// Base class representing a Person
class Person {
public:
string name;
int age;
// Constructor to initialize person details
Person(string n, int a) {
name = n;
age = a;
}
// Function to display person information
void displayPersonInfo () {
cout << "Name: " << name << endl;
cout << "Age: " << age << endl;
}
}i
// Derived class representing a Student (inherits from Person)
class Student : public Person ({
public:
string studentID;
// Constructor to initialize student details
Student (string n, int a, string id) : Person(n, a) {
studentID = id;
}
// Function to display student-specific information
void displayStudentInfo () {
displayPersonInfo(); // Calling base class function to display
person info
cout << "Student ID: " << studentID << endl;
}
}i
// Further derived class representing a GraduateStudent (inherits from Student)
class GraduateStudent : public Student ({
public:
string thesisTitle;
// Constructor to initialize graduate student details
GraduateStudent (string n, int a, string id, string thesis)
Student (n, a, id) {
thesisTitle = thesis;

}
Page |7




“‘\\‘ERSlTV

TR
4

Department of Cyber Security Lecturer Name

937103

Object Oriented Programming — Lecture (10)
Dr. Abdulkadhem A. Abdulkadhem
Second Stage

Voo &
%
6’_,03

// Function to display graduate student-specific information
void displayGraduateStudentInfo () {
displayStudentInfo () s // Calling base class function to display student info
cout << "Thesis Title: " << thesisTitle << endl;
}
bi
int main () {
// Creating an object of GraduateStudent

GraduateStudent gradStudent ("Gaith Amer", 25, "S-23381511", "AI in
Cyber security");

cout << "Graduate Student Information: " << endl;

gradStudent.displayGraduateStudentInfo () ;
return 0;

// Display all information of GraduateStudent

Output:

Graduate Student Information:
Name: Gaith Amer

Age: 25

Student ID: S-23381511

Thesis Title: AI in Healthcare

Explanation:

e The GraduatesStudent class is derived from the student class, which in turn is derived

from the person class. This creates a multilevel inheritance hierarchy.

Code Reusability: The derived classes can reuse the functionality of the base class and
intermediate class, allowing for efficient code structure and reducing redundancy.
Specific Attributes: Each derived class adds more specific attributes, such as student1p

in student and thesisTitle IN GraduateStudent, demonstrating how inheritance can
extend base class functionality.

5. Hybrid Inheritance

o Definition: Hybrid inheritance is a combination of two or more types of inheritance. It
can include combinations like multiple and multilevel inheritance.
e Characteristics:

o It combines various types of inheritance, often leading to more complex
structures.

Requires careful design to avoid ambiguities and issues like the diamond
problem.

Example of Hybrid Inheritance:

#include <iostream>
using namespace std;
// Base class representing a Person
class Person
public:
string name;
int age;

Page | 8




Department of Cyber Security Lecturer Name

90 39371103

Object Oriented Programming — Lecture (10)

A3 Dr. Abdulkadhem A. Abdulkadhem
Second Stage

\\‘\\“_RSWY

&

// Constructor to initialize person details
Person(string n, int a) {
name = n;
age = a;
}
// Function to display person information
void displayPersonInfo () {
cout << "Name: " << name << endl;
cout << "Age: " << age << endl;
}
i
// Derived class representing a Student (inherits from Person)
class Student : public Person {
public:
string studentID;
// Constructor to initialize student details
Student (string n, int a, string id) : Person(n, a) {
studentID = 1id;
}
// Function to display student-specific information
void displayStudentInfo () {
displayPersonInfo() ; // Calling base class function to display person info
cout << "Student ID: " << studentID << endl;
}
}i
// Derived class representing an Employee (inherits from Person)
class Employee : public Person {
public:
string employeelD;
// Constructor to initialize employee details
Employee (string n, int a, string id) : Person(n, a) {
employeeID = id;
}

// Function to display employee-specific information
void displayEmployeeInfo () {
displayPersonInfo() ; // Calling base class function to display person info
cout << "Employee ID: " << employeeID << endl;
}
bi
// Hybrid class representing a GraduateEmployee (inherits from both Student and Employee)
class GraduateEmployee : public Student, public Employee {
public:
string department;
// Constructor to initialize graduate employee details
GraduateEmployee (string n, int a, string studentID, string employeelID,
string dept): Person(n, a), Student(n, a, studentID), Employee(n, a,
employeeID) {
department = dept;
}

// Function to display graduate employee-specific information
void displayGraduateEmployeeInfo () {
displayStudentInfo () ; // Calling base class function to display student info
displayEmployeeInfo () ; // Calling base class function to display employee info
cout << "Department: " << department << endl;
}
}i
int main() {
// Creating an object of GraduateEmployee

GraduateEmployee gradEmp ("Alice", 25, "S12345", "E67890", "Research and
Development") ;

Page |9




“‘\\‘U‘SITY

»
&

Department of Cyber Security Lecturer Name

90 39371103

Object Oriented Programming — Lecture (10)
Dr. Abdulkadhem A. Abdulkadhem
Second Stage

&

cout << "Graduate Employee Information: " << endl;
gradEmp.displayGraduateEmployeeInfo () ;

// Display all information of GraduateEmployee
return O;

Output:

Graduate Employee Information:

Name: Alice

Age: 25

Student ID: S12345

Name: Alice

Age: 25

Employee ID: E67890

Department: Research and Development

Explanation:

e Hybrid Inheritance: This example combines Multiple Inheritance (with the
GraduateEmployee Class inheriting from both student and Employee) and Multilevel
Inheritance (since both student and Employee are derived from the person class).
Code Reusability: Both student and Employee inherit functionality from the base

person Class, and the GraduateEmployee class combines features from both derived
classes.

Function Overriding: The GraduateEmployee class does not override any functions in

this case, but it demonstrates how you can access and combine member functions from
multiple base classes.

Conclusion

Inheritance is a powerful feature in object-oriented programming that allows us to reuse code,
create hierarchical relationships, and extend functionality. Understanding the different types of

inheritance (single, multiple, hierarchical, multilevel, and hybrid) is crucial for designing flexible
and maintainable code.

Key Takeaways:

Single Inheritance: One base class, one derived class.

Multiple Inheritance: One derived class inherits from multiple base classes.
Hierarchical Inheritance: Multiple derived classes inherit from one base class.
Multilevel Inheritance: A class inherits from another derived class.

Hybrid Inheritance: A combination of two or more types of inheritance.




