

P a g e | 1

Department of Cyber Security

Object Oriented Programming – Lecture (10)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

مــــــــــــــــــــــــــن م الاــــــــــســق
 الــــــــــــــــــــــــــسيبرانــــــــــــــــــــــــــــــــــــي

Department of Cyber Security

Subject:

Object Oriented Programming (OOP)

Class:

Second

Lecturer:

Dr. Abdulkadhem A. Abdulkadhem

Lecture(10):

Inheritance in OOP (part 2)

P a g e | 2

Department of Cyber Security

Object Oriented Programming – Lecture (10)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

Objective of the Lecture:

In this lecture, we will cover the five primary types of inheritance in object-oriented

programming (OOP), explain their characteristics, and provide examples for each type.

What is Inheritance?

Inheritance is a fundamental concept in OOP, allowing a class (derived class) to acquire the

properties and methods of another class (base class). It enables code reuse, extends functionality,

and supports a hierarchical classification.

Inheritance allows us to create new classes based on existing ones, enabling us to:

 Reuse code.

 Extend functionality.

 Establish a hierarchical relationship between classes.

There are different types of inheritance, Single Inheritance, Multiple inheritance, Multilevel

inheritance, hybrid inheritance and hierarchical inheritance. The following figure represents the

different types of inheritance.

P a g e | 3

Department of Cyber Security

Object Oriented Programming – Lecture (10)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

1. Single Inheritance

 Definition: In single inheritance, a derived class inherits from a single base class. It

allows the derived class to inherit the properties and methods of one parent class.

 Characteristics:

o One base class.

o One derived class.

o Simple and straightforward inheritance.

Example of Single Inheritance:

#include <iostream>

using namespace std;

// Base class representing a Person

class Person {

public:

 void displayInfo() {

 cout << "This is a Person class" << endl;

 }

};

// Derived class representing a Student, inheriting from Person

class Student : public Person {

public:

 void displayStudentInfo() {

 cout << "This is a Student class" << endl;

 }

};

int main() {

 Student studentObj;

 studentObj.displayInfo(); // Inherited from Person class

 studentObj.displayStudentInfo(); // Function in Student class

 return 0;

}

2. Multiple Inheritance

 Definition: Multiple inheritance occurs when a derived class inherits from more than

one base class. The derived class inherits attributes and methods from all the base classes.

 Characteristics:

o One derived class inherits from multiple base classes.

o Can result in ambiguity if there are overlapping member functions or attributes in

the base classes.

Example of Multiple Inheritance:

#include <iostream>

using namespace std;

// Base class representing a Person

class Person {

P a g e | 4

Department of Cyber Security

Object Oriented Programming – Lecture (10)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

public:

 string name;

 int age;

 void setInfo(string n, int a) {

 name = n;

 age = a;

 }

 void displayPersonInfo() {

 cout << "Name: " << name << endl;

 cout << "Age: " << age << endl;

 }

};

// Base class representing Academic information

class Academic {

public:

 string Dept;

 float GPA;

 void setAcademicInfo(string m, float g) {

 Dept = m;

 GPA = g;

 }

 void displayAcademicInfo() {

 cout << "Dept: " << Dept << endl;

 cout << "GPA: " << GPA << endl;

 }

};

// Derived class representing a Student, inheriting from Person and Academic

class Student : public Person, public Academic {

public:

 void displayStudentInfo() {

 cout << "Student Information: " << endl;

 displayPersonInfo(); // From Person class

 displayAcademicInfo(); // From Academic class

 }

};

int main() {

 Student studentObj;

 // Setting information from both base classes

 studentObj.setInfo("Ali Mohammad", 20); // From Person class

 studentObj.setAcademicInfo("Computer Science", 32.75); // From

Academic class

 // Displaying student information

 studentObj.displayStudentInfo(); // From Student class

 return 0;

}

Output:

Student Information:

Name: John Doe

Age: 20

Dept: Computer Science

GPA: 3.75

P a g e | 5

Department of Cyber Security

Object Oriented Programming – Lecture (10)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

3. Hierarchical Inheritance

 Definition: In hierarchical inheritance, multiple derived classes inherit from a single

base class. All derived classes share the properties and methods of the base class.

 Characteristics:

o One base class.

o Multiple derived classes.

o Common functionality can be reused across derived classes.

Example of Hierarchical Inheritance:

#include <iostream>

using namespace std;

// Base class representing a Player

class Player {

public:

 string name;

 int age;

 // Constructor to initialize player details

 Player(string n, int a) {

 name = n;

 age = a;

 }

 // Function to display general player information

 void displayInfo() {

 cout << "Name: " << name << endl;

 cout << "Age: " << age << endl;

 }

};

// Derived class representing a Football Player

class FootballPlayer : public Player {

public:

 string team;

 int goalsScored;

 // Constructor to initialize football player details

 FootballPlayer(string n, int a, string t, int g) : Player(n, a) {

 team = t;

 goalsScored = g;

 }

 // Function to display football player-specific information

 void displayFootballInfo() {

 displayInfo(); // Calling base class function to display general player info

 cout << "Team: " << team << endl;

 cout << "Goals Scored: " << goalsScored << endl;

 }

};

// Derived class representing a Basketball Player

class BasketballPlayer : public Player {

P a g e | 6

Department of Cyber Security

Object Oriented Programming – Lecture (10)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

public:

 string team;

 int pointsScored;

 // Constructor to initialize basketball player details

 BasketballPlayer(string n, int a, string t, int p) : Player(n, a) {

 team = t;

 pointsScored = p;

 }

 // Function to display basketball player-specific information

 void displayBasketballInfo() {

 displayInfo(); // Calling base class function to display general player info

 cout << "Team: " << team << endl;

 cout << "Points Scored: " << pointsScored << endl;

 }

};

int main() {

 // Creating a FootballPlayer object

 FootballPlayer footballPlayer("Messi", 35, "Red Team", 15);

 cout << "Football Player Information: " << endl;

 footballPlayer.displayFootballInfo(); // Display FootballPlayer details

 cout << endl;

 // Creating a BasketballPlayer object

 BasketballPlayer basketballPlayer("Mike", 28, "Blue Team", 200);

 cout << "Basketball Player Information: " << endl;

 basketballPlayer.displayBasketballInfo(); // Display BasketballPlayer details

 return 0;

}

Output:

Football Player Information:

Name: Messi

Age: 35

Team: Red Team

Goals Scored: 15

Basketball Player Information:

Name: Mike

Age: 28

Team: Blue Team

Points Scored: 200

Explanation:

 footballPlayer and basketballPlayer are objects of the derived classes FootballPlayer

and BasketballPlayer, respectively.

 Both objects can access the common functionality of the Player base class (like name and

age), as well as their own specific data (like team and goalsScored for football, or team and

pointsScored for basketball).

4. Multilevel Inheritance

P a g e | 7

Department of Cyber Security

Object Oriented Programming – Lecture (10)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

 Definition: In multilevel inheritance, a derived class becomes the base class for another

derived class. Essentially, one class inherits from another, which in turn inherits from

another.

 Characteristics:

o A class inherits from another derived class.

o Forms a chain of inheritance.

Example of Multilevel Inheritance:

#include <iostream>

using namespace std;

// Base class representing a Person

class Person {

public:

 string name;

 int age;

 // Constructor to initialize person details

 Person(string n, int a) {

 name = n;

 age = a;

 }

 // Function to display person information

 void displayPersonInfo() {

 cout << "Name: " << name << endl;

 cout << "Age: " << age << endl;

 }

};

// Derived class representing a Student (inherits from Person)

class Student : public Person {

public:

 string studentID;

 // Constructor to initialize student details

 Student(string n, int a, string id) : Person(n, a) {

 studentID = id;

 }

 // Function to display student-specific information

 void displayStudentInfo() {

 displayPersonInfo(); // Calling base class function to display

person info

 cout << "Student ID: " << studentID << endl;

 }

};

// Further derived class representing a GraduateStudent (inherits from Student)

class GraduateStudent : public Student {

public:

 string thesisTitle;

 // Constructor to initialize graduate student details

 GraduateStudent(string n, int a, string id, string thesis) :

Student(n, a, id) {

 thesisTitle = thesis;

 }

P a g e | 8

Department of Cyber Security

Object Oriented Programming – Lecture (10)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

 // Function to display graduate student-specific information

 void displayGraduateStudentInfo() {

 displayStudentInfo(); // Calling base class function to display student info

 cout << "Thesis Title: " << thesisTitle << endl;

 }

};

int main() {

 // Creating an object of GraduateStudent

 GraduateStudent gradStudent("Gaith Amer", 25, "S-23381511", "AI in
Cyber security");

 cout << "Graduate Student Information: " << endl;

 gradStudent.displayGraduateStudentInfo(); // Display all information of GraduateStudent

 return 0;

}

Output:

Graduate Student Information:

Name: Gaith Amer

Age: 25

Student ID: S-23381511

Thesis Title: AI in Healthcare

Explanation:

 The GraduateStudent class is derived from the Student class, which in turn is derived

from the Person class. This creates a multilevel inheritance hierarchy.

 Code Reusability: The derived classes can reuse the functionality of the base class and

intermediate class, allowing for efficient code structure and reducing redundancy.

 Specific Attributes: Each derived class adds more specific attributes, such as studentID

in Student and thesisTitle in GraduateStudent, demonstrating how inheritance can

extend base class functionality.

5. Hybrid Inheritance

 Definition: Hybrid inheritance is a combination of two or more types of inheritance. It

can include combinations like multiple and multilevel inheritance.

 Characteristics:

o It combines various types of inheritance, often leading to more complex

structures.

o Requires careful design to avoid ambiguities and issues like the diamond

problem.

Example of Hybrid Inheritance:

#include <iostream>

using namespace std;

// Base class representing a Person

class Person {

public:

 string name;

 int age;

P a g e | 9

Department of Cyber Security

Object Oriented Programming – Lecture (10)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

 // Constructor to initialize person details

 Person(string n, int a) {

 name = n;

 age = a;

 }

 // Function to display person information

 void displayPersonInfo() {

 cout << "Name: " << name << endl;

 cout << "Age: " << age << endl;

 }

};

// Derived class representing a Student (inherits from Person)

class Student : public Person {

public:

 string studentID;

 // Constructor to initialize student details

 Student(string n, int a, string id) : Person(n, a) {

 studentID = id;

 }

 // Function to display student-specific information

 void displayStudentInfo() {

 displayPersonInfo(); // Calling base class function to display person info

 cout << "Student ID: " << studentID << endl;

 }

};

// Derived class representing an Employee (inherits from Person)

class Employee : public Person {

public:

 string employeeID;

 // Constructor to initialize employee details

 Employee(string n, int a, string id) : Person(n, a) {

 employeeID = id;

 }

 // Function to display employee-specific information

 void displayEmployeeInfo() {

 displayPersonInfo(); // Calling base class function to display person info

 cout << "Employee ID: " << employeeID << endl;

 }

};

// Hybrid class representing a GraduateEmployee (inherits from both Student and Employee)

class GraduateEmployee : public Student, public Employee {

public:

 string department;

 // Constructor to initialize graduate employee details

 GraduateEmployee(string n, int a, string studentID, string employeeID,

string dept): Person(n, a), Student(n, a, studentID), Employee(n, a,

employeeID) {

 department = dept;

 }

 // Function to display graduate employee-specific information

 void displayGraduateEmployeeInfo() {

 displayStudentInfo(); // Calling base class function to display student info

 displayEmployeeInfo(); // Calling base class function to display employee info

 cout << "Department: " << department << endl;

 }

};

int main() {

 // Creating an object of GraduateEmployee

 GraduateEmployee gradEmp("Alice", 25, "S12345", "E67890", "Research and

Development");

P a g e | 10

Department of Cyber Security

Object Oriented Programming – Lecture (10)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

 cout << "Graduate Employee Information: " << endl;

 gradEmp.displayGraduateEmployeeInfo(); // Display all information of GraduateEmployee

 return 0;

}

Output:

Graduate Employee Information:

Name: Alice

Age: 25

Student ID: S12345

Name: Alice

Age: 25

Employee ID: E67890

Department: Research and Development

Explanation:

 Hybrid Inheritance: This example combines Multiple Inheritance (with the

GraduateEmployee class inheriting from both Student and Employee) and Multilevel

Inheritance (since both Student and Employee are derived from the Person class).

 Code Reusability: Both Student and Employee inherit functionality from the base

Person class, and the GraduateEmployee class combines features from both derived

classes.

 Function Overriding: The GraduateEmployee class does not override any functions in

this case, but it demonstrates how you can access and combine member functions from

multiple base classes.

Conclusion

Inheritance is a powerful feature in object-oriented programming that allows us to reuse code,

create hierarchical relationships, and extend functionality. Understanding the different types of

inheritance (single, multiple, hierarchical, multilevel, and hybrid) is crucial for designing flexible

and maintainable code.

Key Takeaways:

 Single Inheritance: One base class, one derived class.

 Multiple Inheritance: One derived class inherits from multiple base classes.

 Hierarchical Inheritance: Multiple derived classes inherit from one base class.

 Multilevel Inheritance: A class inherits from another derived class.
 Hybrid Inheritance: A combination of two or more types of inheritance.

