Loy Il 4 I
AL MUSTAQBAL UNIVERSITY

DEPARTMENT OF CYBER SECURITY

SUBJECT:
PUBLIC KEY ENCRYPTION
CLASsS:
THIRD
LECTURER:

ASST. LECTURER QUSAI AL-DURRAH

LECTURE (3 & 4):

DIFFIE—HELLMAN KEY EXCHANGE AND
ASYMMETRIC CRYPTOSYSTEMS




Department of Cyber Security Lecturer Name:

ol

Public key encryption — Lecture (3 & 4)

/‘7 g
%
0 393

Asst. Lecturer Qusai Al-Durrah
Third Stage Q

1. Introduction
This lecture introduces one of the most influential concepts in modern cryptography—the Diffie—
Hellman Key Exchange—and its role within asymmetric (public-key) cryptosystems.
Public-key cryptography, made publicly known in 1976 by Whitfield Diffie and Martin Hellman,
revolutionized secure communication by allowing two parties to establish a shared secret over an
insecure channel without ever meeting or sharing a pre-existing key.
This lecture explains the historical context of this innovation, the mathematical foundations of
exponential key exchange, and how the Diffie-Hellman protocol allows users to create a common
secret key using modular arithmetic. It also discusses other public-key algorithms (RSA, ElGamal,
Schnorr, ECC, and DSA) and their respective uses in encryption and digital signatures.
2. Learning OQutcomes
By the end of this lecture, students will be able to:
1. Explain the historical development of public-key cryptography and identify key
contributors such as Diffie and Hellman.
. Describe the concept of the Diffie-Hellman key exchange and the mathematical principles
underlying modular exponentiation and discrete logarithms.
Ilustrate the step-by-step process of generating a shared key using the Diffie—Hellman
scheme.
. Differentiate between key exchange algorithms and encryption or signature algorithms
such as RSA, ElGamal, and ECC.
. Apply numerical examples to demonstrate key generation and verify the shared secret.
Evaluate the strengths and limitations of Diffie-Hellman in terms of computational

complexity and real-world security.

3. Overview of Asymmetric Public-Key Cryptosystems

Public-key cryptography became widely recognized after Diffie and Hellman proposed their
exponential key exchange method in 1976. Since then, many public-key algorithms have been

developed, though only a few remain both secure and practical for real-world use.
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3.1 Classification of Public-Key Algorithms

RSA (1978): Supports both encryption and digital signatures.
ElGamal (1985): Based on the discrete logarithm problem; suitable for encryption and
signatures.
Schnorr (1990): Used primarily for efficient digital signatures.
Elliptic Curve Cryptography (ECC, 1985): Offers equivalent security with smaller key
sizes.
Digital Signature Algorithm (DSA, 1991): Designed exclusively for digital signatures.
The effectiveness of any public-key scheme depends on:
e The key length (bit size).
e The difficulty of solving the underlying mathematical problem (e.g., factoring or discrete
logarithm).
4. The Diffie—Hellman Exponential Key Exchange
The Diffie—Hellman (DH) scheme provides a secure way for two parties to establish a shared
secret key through public communication channels. The protocol relies on the mathematical
asymmetry between easy exponentiation and hard discrete logarithms.
4.1 Mathematical Foundation
Let (p) be a prime number and () a primitive element (generator) of the multiplicative group
GF(p). Where A Galois Field, abbreviated as GF, is a finite mathematical field that contains a
limited number of elements. All arithmetic operations are performed modulo a fixed number,
and the results always remain within the field.
For any integer (Y) and base (a), there exists a unique exponent (X) such that:
Y= o* (mod p) where 2< X <p-1
Here, (X) is called the discrete logarithm of (Y) to the base (o).
e Computing (Y = a® mod p) is easy (exponentiation).
e Computing (X) from (Y) is extremely hard (discrete logarithm problem).

This one-way property forms the core of Diffie—Hellman security.
5. Protocol Steps for Key Exchange

Assume two users, A and B, want to establish a shared key.
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Public parameters:

Both agree on a prime (p) and a primitive root (o).

These values are public.
Private keys:
o A selects a private number (Xa).
o B selects a private number (Xs).
Both keep these numbers secret.
Public keys:
o A computes (Ya = a** mod p).
o B computes (YB = a*® mod p).
Each sends their public key to the other.
Shared secret computation:
o A computes (KAB = (Ys) ** mod p).
o B computes (KBA = (Ya)*® mod p).
Because Y = o*® and Ya = o4, both calculations yield:

K=a*Xs mod p

Thus, both A and B obtain the same shared secret key, which can later be used for symmetric

encryption.
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Generate secret Generate secret
random integer random integer
x ¥
fromtheset {1,2,..,p—1} fromtheset {1.2,..,p—1}

v A J

Compute a*(mod p) Compute a¥ (mod p)
and place it in and place it in
a public file apublic file

Compute key Compute key
(a¥)* (mod p) (a® ¥ (mod p)

Commaon sceret key
a™ [mod p)

a: A prmitive element of
the finite GF (p)(l < a< p)

Figure 1: The Diffie—Hellman Exponential Key Exchange Scheme

This figure illustrates the sequence of operations in the Diffie—-Hellman protocol. Each user selects
a private random integer, computes a public value using modular exponentiation, exchanges public
values, and derives the same shared secret key a*4Y® mod p.
6. Calculation Example and code
Given:

e Prime modulus (p=11)

e Primitive root (a0 = 2)

Step 1:
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User A chooses a private key ( Xa=15).
User B chooses ( X =7).

Step 2: Compute public keys
Ya=2mod 11 =32mod 11 =10
Ye=2"mod 11 =128 mod 11 =7

Step 3: Compute shared key
Kas=Ys**mod 11=7"mod 11 = 10
Kea=Ya**mod 11 =10"mod 11=10

Both users derive the same shared secret: K= 10

Code:

import random

# Step 1: Publicly agreed parameters (prime p and primitive root o)
p=23 # A prime number

alpha =5 # A primitive root modulo p

print("Publicly shared values:")

print("Prime (p):", p)

print("Primitive root (a):", alpha)

print("-" * 40)

# Step 2: Each user chooses a private key
Xa =random.randint(2, p-1) # Private key for User A

Xb =random.randint(2, p-1) # Private key for User B

print("Private keys:")

print("User A private key (Xa):", Xa)
print("User B private key (Xb):", Xb)
print("-" * 40)
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# Step 3: Each user computes their public key

Ya = pow(alpha, Xa, p) # A's public key = a*Xa mod p
Yb = pow(alpha, Xb, p) # B's public key = a*Xb mod p
print("Public keys:")

print("User A public key (Ya):", Ya)

print("User B public key (Yb):", Yb)

print("-" * 40)

# Step 4: Exchange public keys and compute shared secret
Ka=pow(Yb, Xa,p) # A computes shared key

Kb =pow(Ya, Xb,p) # B computes shared key
print("Shared secret keys:")

print("Key computed by A:", Ka)

print("Key computed by B:", Kb)

print("-" * 40)

# Verify both keys are identical
if Ka ==Kb:

print(" Success: Common secret key established:", Ka)
else:

print(" Error: Keys do not match!")

Explanation

Step ||Operation Description

p, alpha Public parameters agreed upon by both users

Xa, Xb Random private keys selected secretly

Ya, Yb Public keys calculated using modular exponentiation

Ka, Kb Shared secret key derived independently by both users
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Publicly shared values:
Prime (p): 23

Primitive root (a): 5

Private keys:
User A private key (Xa): 6
User B private key (Xb): 15

Public keys:
User A public key (Ya): 8
User B public key (Yb): 19

Shared secret keys:
Key computed by A: 2
Key computed by B: 2

Success: Common secret key established: 2

7. Security Considerations

The security of Diffie-Hellman depends on:
e The size of the prime number (p): larger primes make discrete logarithms

computationally infeasible.
The choice of primitive root (o): ensures that generated numbers span the full
multiplicative group.
Avoiding small subgroup attacks and man-in-the-middle attacks by incorporating
authentication mechanisms (e.g., signed public keys).

Although Diffie-Hellman is secure in theory, without authentication it is vulnerable to

interception during key exchange.
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8. Variants and Applications
o Ephemeral Diffie—-Hellman (DHE): Uses temporary keys for each session, providing
forward secrecy.
Elliptic Curve Diffie-Hellman (ECDH): Implements DH on elliptic curves, offering
equal security with shorter keys.
TLS/SSL: Modern web browsers use Diffie—Hellman variants to secure HTTPS sessions.
Virtual Private Networks (VPNs): Use DH or ECDH to establish session keys for

encrypted tunnels.

9. Advantages and Limitations

Advantages Limitations

o ) ) Susceptible to man-in-the-middle if
Eliminates need for prior key sharing )
unauthenticated

Based on mathematically hard discrete logarithm ||Computationally expensive for very large

problem primes

Enables secure communication over open Requires additional mechanisms for

channels authentication

10. Conclusion

The Diffie-Hellman Key Exchange remains one of the foundational pillars of modern
cybersecurity.

Its elegant mathematical foundation enables secure establishment of shared keys without prior
trust, forming the basis for many modern protocols such as TLS, SSH, and IPSec.
Despite its vulnerabilities when used alone, its combination with digital signatures and modern
key agreement extensions ensures both confidentiality and authenticity in secure communication

systems.
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Homework Assignment 3:

Using your knowledge from The Lecture, explain in your own words how two users (A and B)
establish a shared secret key using the Diffie-Hellman key exchange algorithm.
Your explanation should include:
1. The meaning of the public parameters (p) and ().
. How users select private and public keys.
. How both users independently compute the same shared secret key.
. One short numerical example to support your answer (you may use the valuesp=11, o =2).
. A short note on one security risk (e.g., man-in-the-middle attack) and how it can be
mitigated.
Format Requirements:
e Length: 250-300 words
o Language: English or Arabic
o File type: Word or PDF
Submission: Google Classroom — Homework Assignment 3

Deadline: One week after the lecture




