

 مــــــــــــــــــــــــــن الــــــــــــــــــــــــــــــــــــسيبرانــــــــــــــــــــــــــــــــــــي م الاـــــــ ـــس ــق
Department of Cyber Security

Subject:

Public key encryption

Class:

third

Lecturer:

Asst. Lecturer Qusai Al-Durrah

Lecture (3 & 4):

Diffie–Hellman Key Exchange and
Asymmetric Cryptosystems

P a g e | 2

Department of Cyber Security

Public key encrypƟon – Lecture (3 & 4)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

1. Introduction

This lecture introduces one of the most influential concepts in modern cryptography—the Diffie–

Hellman Key Exchange—and its role within asymmetric (public-key) cryptosystems.

Public-key cryptography, made publicly known in 1976 by Whitfield Diffie and Martin Hellman,

revolutionized secure communication by allowing two parties to establish a shared secret over an

insecure channel without ever meeting or sharing a pre-existing key.

This lecture explains the historical context of this innovation, the mathematical foundations of

exponential key exchange, and how the Diffie–Hellman protocol allows users to create a common

secret key using modular arithmetic. It also discusses other public-key algorithms (RSA, ElGamal,

Schnorr, ECC, and DSA) and their respective uses in encryption and digital signatures.

2. Learning Outcomes

By the end of this lecture, students will be able to:

1. Explain the historical development of public-key cryptography and identify key

contributors such as Diffie and Hellman.

2. Describe the concept of the Diffie–Hellman key exchange and the mathematical principles

underlying modular exponentiation and discrete logarithms.

3. Illustrate the step-by-step process of generating a shared key using the Diffie–Hellman

scheme.

4. Differentiate between key exchange algorithms and encryption or signature algorithms

such as RSA, ElGamal, and ECC.

5. Apply numerical examples to demonstrate key generation and verify the shared secret.

6. Evaluate the strengths and limitations of Diffie–Hellman in terms of computational

complexity and real-world security.

3. Overview of Asymmetric Public-Key Cryptosystems

Public-key cryptography became widely recognized after Diffie and Hellman proposed their

exponential key exchange method in 1976. Since then, many public-key algorithms have been

developed, though only a few remain both secure and practical for real-world use.

P a g e | 3

Department of Cyber Security

Public key encrypƟon – Lecture (3 & 4)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

3.1 Classification of Public-Key Algorithms

 RSA (1978): Supports both encryption and digital signatures.

 ElGamal (1985): Based on the discrete logarithm problem; suitable for encryption and

signatures.

 Schnorr (1990): Used primarily for efficient digital signatures.

 Elliptic Curve Cryptography (ECC, 1985): Offers equivalent security with smaller key

sizes.

 Digital Signature Algorithm (DSA, 1991): Designed exclusively for digital signatures.

The effectiveness of any public-key scheme depends on:

 The key length (bit size).

 The difficulty of solving the underlying mathematical problem (e.g., factoring or discrete

logarithm).

4. The Diffie–Hellman Exponential Key Exchange

The Diffie–Hellman (DH) scheme provides a secure way for two parties to establish a shared

secret key through public communication channels. The protocol relies on the mathematical

asymmetry between easy exponentiation and hard discrete logarithms.

4.1 Mathematical Foundation

Let (p) be a prime number and (α) a primitive element (generator) of the multiplicative group

GF(p). Where A Galois Field, abbreviated as GF, is a finite mathematical field that contains a

limited number of elements. All arithmetic operations are performed modulo a fixed number,

and the results always remain within the field.

For any integer (Y) and base (α), there exists a unique exponent (X) such that:

Y≡ αX (mod p) where 2 ≤ X ≤ p - 1

Here, (X) is called the discrete logarithm of (Y) to the base (α).

 Computing (Y = αX mod p) is easy (exponentiation).

 Computing (X) from (Y) is extremely hard (discrete logarithm problem).

This one-way property forms the core of Diffie–Hellman security.

5. Protocol Steps for Key Exchange

Assume two users, A and B, want to establish a shared key.

P a g e | 4

Department of Cyber Security

Public key encrypƟon – Lecture (3 & 4)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

1. Public parameters:

Both agree on a prime (p) and a primitive root (α).

These values are public.

2. Private keys:

o A selects a private number (XA).

o B selects a private number (XB).

Both keep these numbers secret.

3. Public keys:

o A computes (YA = αXA mod p).

o B computes (YB = αXB mod p).

Each sends their public key to the other.

4. Shared secret computation:

o A computes (KAB = (YB) XA mod p).

o B computes (KBA = (YA)XB mod p).

Because YB = αXB and YA = αXA, both calculations yield:

K=αXAXB mod p

Thus, both A and B obtain the same shared secret key, which can later be used for symmetric

encryption.

P a g e | 5

Department of Cyber Security

Public key encrypƟon – Lecture (3 & 4)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

Figure 1: The Diffie–Hellman Exponential Key Exchange Scheme

This figure illustrates the sequence of operations in the Diffie–Hellman protocol. Each user selects

a private random integer, computes a public value using modular exponentiation, exchanges public

values, and derives the same shared secret key αXAYB mod  p.

6. Calculation Example and code

Given:

 Prime modulus (p = 11)

 Primitive root (α = 2)

Step 1:

P a g e | 6

Department of Cyber Security

Public key encrypƟon – Lecture (3 & 4)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

User A chooses a private key (XA = 5).

User B chooses (XB = 7).

Step 2: Compute public keys

YA=25 mod 11 = 32 mod 11 = 10

YB = 27 mod 11 = 128 mod 11 = 7

Step 3: Compute shared key

KAB=YB
XA mod 11=75 mod 11 = 10

KBA=YA
XB mod 11 =107 mod 11=10

Both users derive the same shared secret: K = 10

Code:

import random

Step 1: Publicly agreed parameters (prime p and primitive root α)

p = 23 # A prime number

alpha = 5 # A primitive root modulo p

print("Publicly shared values:")

print("Prime (p):", p)

print("Primitive root (α):", alpha)

print("-" * 40)

Step 2: Each user chooses a private key

Xa = random.randint(2, p-1) # Private key for User A

Xb = random.randint(2, p-1) # Private key for User B

print("Private keys:")

print("User A private key (Xa):", Xa)

print("User B private key (Xb):", Xb)

print("-" * 40)

P a g e | 7

Department of Cyber Security

Public key encrypƟon – Lecture (3 & 4)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

Step 3: Each user computes their public key

Ya = pow(alpha, Xa, p) # A's public key = α^Xa mod p

Yb = pow(alpha, Xb, p) # B's public key = α^Xb mod p

print("Public keys:")

print("User A public key (Ya):", Ya)

print("User B public key (Yb):", Yb)

print("-" * 40)

Step 4: Exchange public keys and compute shared secret

Ka = pow(Yb, Xa, p) # A computes shared key

Kb = pow(Ya, Xb, p) # B computes shared key

print("Shared secret keys:")

print("Key computed by A:", Ka)

print("Key computed by B:", Kb)

print("-" * 40)

Verify both keys are identical

if Ka == Kb:

 print(" Success: Common secret key established:", Ka)

else:

 print(" Error: Keys do not match!")

Explanation

Step Operation Description

1 p, alpha Public parameters agreed upon by both users

2 Xa, Xb Random private keys selected secretly

3 Ya, Yb Public keys calculated using modular exponentiation

4 Ka, Kb Shared secret key derived independently by both users

P a g e | 8

Department of Cyber Security

Public key encrypƟon – Lecture (3 & 4)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

Output:

Publicly shared values:

Prime (p): 23

Primitive root (α): 5

--

Private keys:

User A private key (Xa): 6

User B private key (Xb): 15

--

Public keys:

User A public key (Ya): 8

User B public key (Yb): 19

--

Shared secret keys:

Key computed by A: 2

Key computed by B: 2

--

Success: Common secret key established: 2

7. Security Considerations

The security of Diffie–Hellman depends on:

 The size of the prime number (p): larger primes make discrete logarithms

computationally infeasible.

 The choice of primitive root (α): ensures that generated numbers span the full

multiplicative group.

 Avoiding small subgroup attacks and man-in-the-middle attacks by incorporating

authentication mechanisms (e.g., signed public keys).

Although Diffie–Hellman is secure in theory, without authentication it is vulnerable to

interception during key exchange.

P a g e | 9

Department of Cyber Security

Public key encrypƟon – Lecture (3 & 4)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

8. Variants and Applications

 Ephemeral Diffie–Hellman (DHE): Uses temporary keys for each session, providing

forward secrecy.

 Elliptic Curve Diffie–Hellman (ECDH): Implements DH on elliptic curves, offering

equal security with shorter keys.

 TLS/SSL: Modern web browsers use Diffie–Hellman variants to secure HTTPS sessions.

 Virtual Private Networks (VPNs): Use DH or ECDH to establish session keys for

encrypted tunnels.

9. Advantages and Limitations

Advantages Limitations

Eliminates need for prior key sharing
Susceptible to man-in-the-middle if

unauthenticated

Based on mathematically hard discrete logarithm

problem

Computationally expensive for very large

primes

Enables secure communication over open

channels

Requires additional mechanisms for

authentication

10. Conclusion

The Diffie–Hellman Key Exchange remains one of the foundational pillars of modern

cybersecurity.

Its elegant mathematical foundation enables secure establishment of shared keys without prior

trust, forming the basis for many modern protocols such as TLS, SSH, and IPSec.

Despite its vulnerabilities when used alone, its combination with digital signatures and modern

key agreement extensions ensures both confidentiality and authenticity in secure communication

systems.

References

 Diffie, W., & Hellman, M. (1976). New Directions in Cryptography. IEEE Transactions on Information

Theory.

 Stallings, W. (2017). Cryptography and Network Security: Principles and Practice. 7th Edition, Pearson.

P a g e | 10

Department of Cyber Security

Public key encrypƟon – Lecture (3 & 4)

Third Stage

Lecturer Name:

Asst. Lecturer Qusai Al-Durrah

Homework Assignment 3:

Using your knowledge from The Lecture, explain in your own words how two users (A and B)

establish a shared secret key using the Diffie–Hellman key exchange algorithm.

Your explanation should include:

1. The meaning of the public parameters (p) and (α).

2. How users select private and public keys.

3. How both users independently compute the same shared secret key.

4. One short numerical example to support your answer (you may use the values p = 11, α = 2).

5. A short note on one security risk (e.g., man-in-the-middle attack) and how it can be

mitigated.

Format Requirements:

 Length: 250–300 words

 Language: English or Arabic

 File type: Word or PDF

 Submission: Google Classroom → Homework Assignment 3

 Deadline: One week after the lecture

