DEPARTMENT OF CYBER SECURITY
SUBJECT:
OBJECT ORIENTED PROGRAMMING (OOP)
CLASS:
SECOND
LECTURER:

DR. ABDULKADHEM A. ABDULKADHEM

LECTURE: (3)

INTRODUCTION TO OBJECT-
ORIENTED PROGRAMMING (OOP)




Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

1. General Introduction

Object-Oriented Programming, or OOP, is a programming paradigm that
organizes software design around objects rather than actions. An object
represents a real-world entity that combines both data, known as attributes,
and behaviors, known as methods. For example, a car has attributes such as
color and speed, and behaviors such as starting and driving. Similarly, a
student has attributes such as name and age, and behaviors such as studying
or attending a class. By modeling programs in this way, OOP makes code more
natural to understand, closer to real life, and easier to maintain. Throughout
this course, we will explore the four fundamental principles of OOP—
abstraction, encapsulation, inheritance, and polymorphism—and learn how
they work together to create software that is modular, reusable, and efficient.

2. Object-Oriented Programming:

Object-Oriented Programming (OOP) is a programming paradigm that
uses 'objects' to represent data and methods that operate on that data. This
approach allows programmers to model real-world entities, making code
more modular, reusable, and easier to maintain.

Core Concepts of OOP:

- Object: An object is an instance of a class that contains attributes (data)
and methods (functions) that operate on the data. Think of it as a real-
world entity, like a car or a person.

Class: A class is a blueprint for creating objects. It defines the attributes
and methods that its objects will have.




Department of Cyber Security Lecturer Name

Object Oriented Programming — Lecture (3)

2%
) 393100

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

3. Key Concepts of OOP:

Inheritance

Polymorphism ‘I

3.1. Abstraction:

Abstraction is the concept of hiding complex implementation details and
exposing only the necessary parts. This allows users to interact with objects
without worrying about their internal workings.

Example: In a car, you interact with the steering wheel without needing to
know how the engine works.

#include <iostream>
using namespace std;

class Car {
public:
void startEngine() {
cout << "Engine started!" << end]l;
}
void drive() {
cout << "Car is driving!" << end];




Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

int main() {
Car myCar;
myCar.startEngine();
myCar.drive();
return 0;

}

Explanation:

« The Car class abstracts the complexity of starting and driving a car. The
user doesn't need to know how the engine starts internally, just that
they need to call the startEngine() and drive() methods.

When we create an object my€ar, we can use these functions to simulate
starting and driving the car, without needing to understand the inner

workings of the engine.

3.2. Encapsulation:

Encapsulation is the bundling (z«>3) of data (attributes) and methods

(functions) that operate on the data into a single unit or class. It also restricts
direct access to some components, which is essential for protecting data

integrity.

#include <iostream>
using namespace std;

class BankAccount {
private:
int balance;

public:
BankAccount(int initialBalance) {
balance = initialBalance;

}

void deposit(int amount) {
balance += amount;

Page |4




Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

void withdraw(int amount) {
if (amount <= balance) {
balance -= amount;
}else {
cout << "Insufficient funds!" << end];

}
}

int getBalance() {
return balance;

¥

int main() {
BankAccount account(500);
account.deposit(200);
account.withdraw(100);
cout << "Current balance: " << account.getBalance() << endl;
return 0;

}

Explanation:

. The BankAccount class encapsulates the balance attribute as a private
variable. Users cannot modify it directly but can interact with it via
public methods like deposit(), withdraw(), and getBalance().

This protects the balance from being accidentally modified, ensuring

that all changes occur through the proper methods.

3.3. Inheritance:

Inheritance allows one class to inherit (&_z) the attributes and methods
of another class, promoting(zs_5) code reuse. The new class, known as the
'derived’' or 'child' class, can also have its own additional attributes and
methods.

Page |5




Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

#include <iostream>
using namespace std;
class Animal {
public:
void eat() {
cout << "This animal is eating!" << end];

5

class Dog : public Animal {
public:
void bark() {
cout << "The dog is barking!" << end];

5

int main() {
Dog myDog;
myDog.eat(); // Inherited method
myDog.bark(); // Dog-specific method
return 0;

}

Explanation:

- The Dog class inherits from the Animal class. This means that all Dog
objects can use the gat() method defined in Animal.

- Inheritance allows us to reuse the functionality of the Animal class while
adding more specific methods, like bark(), to the Dog class.

3.4. Polymorphism:

Polymorphism allows objects of different types to be treated as objects
of a common superclass. It enables a single function or method to behave
differently based on the object that calls it.

#include <iostream>
using namespace std;

class Animal {

Page |6




Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

virtual void makeSound() {
cout << "Some generic animal sound"” << endl;

5

class Dog : public Animal {
public:
void makeSound() override {
cout << "Woof!" << endl;

5

class Cat : public Animal {
public:
void makeSound() override {
cout << "Meow!" << endl;

5

int main() {
Animal* myAnimal;
Dog myDog;
Cat myCat;

myAnimal = &myDog;
myAnimal->makeSound(); // Outputs: Woof!

myAnimal = &myCat;
myAnimal->makeSound(); // Outputs: Meow!

return 0;

}

Explanation:

« Here, we use polymorphism to treat Dog and €at objects as Animal objects.
The method makeSound() behaves differently depending on whether it's
called by a Dog or a (at.

Page |7




Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

Polymorphism enables flexibility and the ability to handle multiple
object types through a common interface (in this case, Animal).

4. Conclusion:

Object-Oriented Programming makes software design more organized and
intuitive by breaking down a problem into objects. Through abstraction,
encapsulation, inheritance, and polymorphism, OOP encourages code reuse,
modularity, and ease of maintenance.

Key Takeaways:

Abstraction simplifies complex systems.

Encapsulation protects data and ensures controlled access.
Inheritance promotes code reuse.

Polymorphism allows for flexibility in method behavior.

MCQ FOR LECTURE 3

Q1.Which of the following best defines a Class in OOP?
A) A real-world entity like a car or a person

B) An instance of an object

C) A blueprint for creating objects

D) A function that hides data

E) A variable that stores data

Q2. What is an Object in OOP?
A) A type of function

B) An instance of a class

C) A method inside a class

D) A way to protect data

E) A keyword in C++

Q3. Which OOP principle refers to hiding internal details and showing only necessary
features?

A) Inheritance

B) Encapsulation

C) Abstraction

D) Polymorphism

E) Overloading

Page | 8




Department of Cyber Security Lecturer Name

Object Oriented Programming — Lecture (3)

2%
) 393100

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

Q4. In the Bankaccount example, why is balance declared as private?
A) To save memory

B) To restrict direct access and protect data integrity

C) To make the code faster

D) To allow all functions to access it directly

E) Because variables must be private in OOP

Q5. Which of the following demonstrates Inheritance?

A) A car class with methods start () and drive ()

B) A pog class that extends an animal class

C) A Bankaccount class with deposit () and withdraw () methods
D) Using private to hide data

E) A function with the same name but different parameters

Q6.Which OOP concept allows the same function makesound () to produce different outputs for
Dog and cat?

A) Abstraction

B) Encapsulation

C) Inheritance

D) Polymorphism

E) Aggregation

Q7. Which of the following is a key benefit of OOP?

A) Increases code duplication

B) Makes code less modular

C) Encourages code reuse and easier maintenance

D) Requires more memory than procedural programming
E) Prevents the use of functions




