

جامعة المستقبل
AL MUSTAQBAL UNIVERSITY

قسم الأمان السيبراني
DEPARTMENT OF CYBER SECURITY

SUBJECT: COMPUTATION THEORY
CLASS: 3rd

LECTURER: MSc :MUNTATHER AL-MUSSAWEE

LECTURE: (6)
LANGUAGE GRAMMAR
DERIVATION TREES

Derivation Trees

Derivation tree is a graphical representation for the derivation of the given production rules for a given CFG. It is the simple way to show how the derivation can be done to obtain some string from a given set of production rules.

☞ The derivation tree is also called **parse tree** or **syntax tree** or **phrase tree** or **generation tree** or **production tree** or **derivation tree**.

The properties of parse tree are:

- 1- Root: The root node is always a node indicating start symbols.
- 2- PSG: The interior nodes are always the non-terminal nodes.
- 3- Leaves: The leaf node is always terminal nodes.
- 4- Links: collection of connections.

وهي القواعد التي ظهرت في الشكككش الشكككجري بشكككش العقد الوسكتكطية التي تتحول في النهاية الى الرموز النهائية Terminal، وت تكون ايضاً من اربعة مجامي .
PSG = (N, T, P, S)

Derivation

Derivation is a sequence of production rules. It is used to get the input string through these production rules. During parsing, we have to take two decisions. These are as follows:

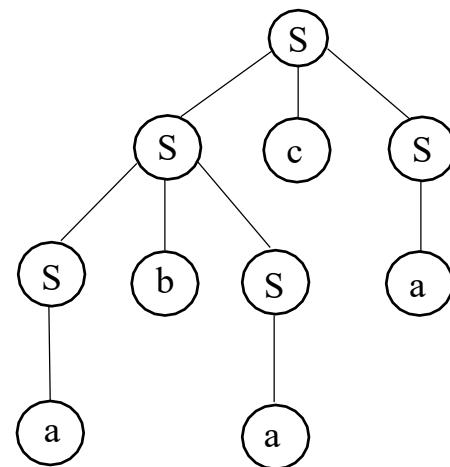
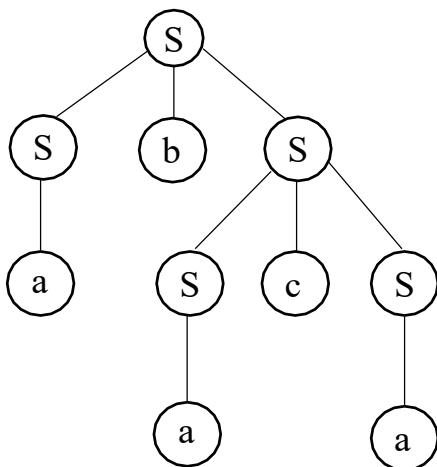
- We have to decide the non-terminal which is to be replaced.
- We have to decide the production rule by which the non-terminal will be replaced.

We have two options to decide which non-terminal to be placed with production rule.

1. Leftmost Derivation:

In the leftmost derivation, the input is scanned and replaced with the production rule from left to right. So in leftmost derivation, we read the input string from left to right.

$N \rightarrow t \mid Nt$ - Leftmost Derivation

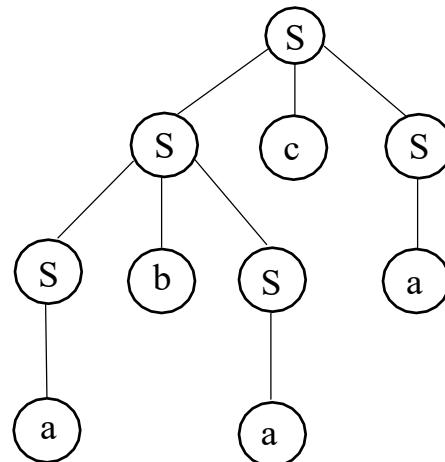
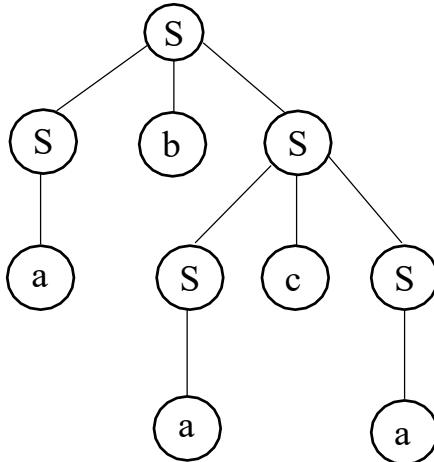


Example: Let $G(L) = (\{S\}, \{a, b, c\}, P, S)$, where P is:

$$S \rightarrow SbS \mid ScS \mid a$$

Find the string “abaca”

$$\begin{aligned} S &\rightarrow \underline{S}bS \\ &\rightarrow abS \\ &\rightarrow abScS \\ &\rightarrow abacS \\ &\rightarrow abaca \quad \text{Accept} \end{aligned}$$

$$\begin{aligned} S &\rightarrow \underline{S}cS \\ &\rightarrow SbScS \\ &\rightarrow abScS \\ &\rightarrow abacS \\ &\rightarrow abaca \quad \text{Accept} \end{aligned}$$



2. Rightmost Derivation:

In rightmost derivation, the input is scanned and replaced with the production rule from right to left. So in rightmost derivation, we read the input string from right to left.

$N \rightarrow t \mid tN$ - Rightmost Derivation

$S \rightarrow SbS$
 $\rightarrow SbScS$
 $\rightarrow SbSca$
 $\rightarrow Sbaca$
 $\rightarrow abaca$ Accept

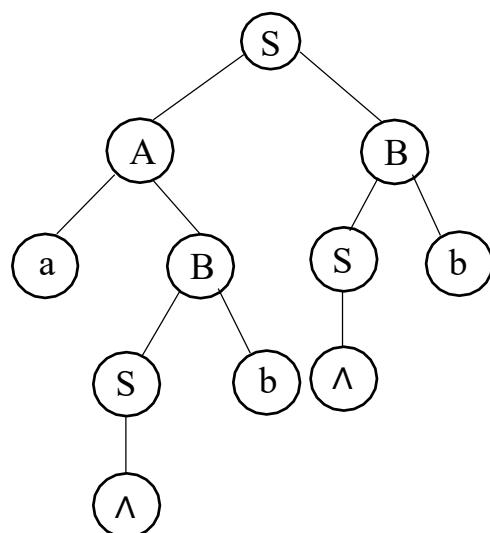
$S \rightarrow ScS$
 $\rightarrow Sca$
 $\rightarrow SbSca$
 $\rightarrow Sbaca$
 $\rightarrow abaca$ Accept

كثير في المثل السكريبيات نلاحظ أن الحش الثاني هو نفس جهة الحش الأول، متكون من اشتقاق من جهة اليمين واشتقاق من جهة اليسار لنفس الشجرة.

نستنتج من ذلك عندما يوجد امث من حش من جهة اليسار او امث من حش من جهة اليمين تسمى الغامضة ambiguous grammar.

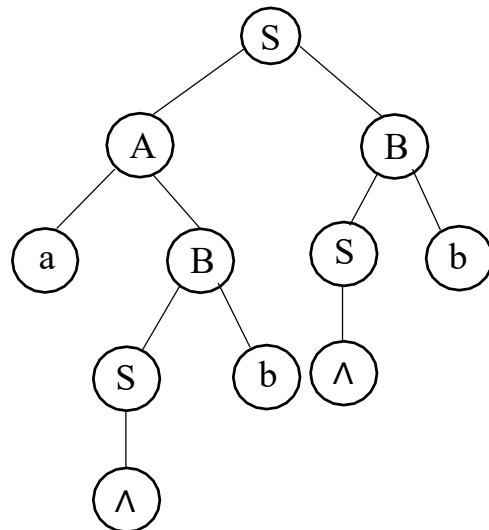
Examples of Derivation:

Example 1:


Derive the string "abb" for leftmost derivation and rightmost derivation using a CFG given by,

$S \rightarrow AB \mid \Lambda$
 $A \rightarrow aB$
 $B \rightarrow Sb$

Solution:

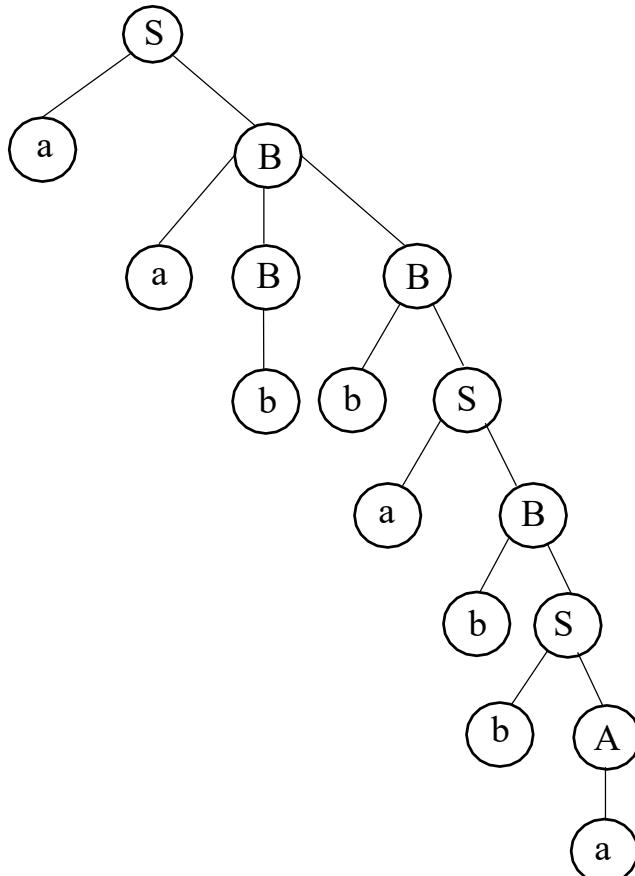

Leftmost derivation:

$S \rightarrow AB$
 $\rightarrow aBB$
 $\rightarrow aSbB$
 $\rightarrow a\Lambda bB$
 $\rightarrow abSb$
 $\rightarrow ab\Lambda b$
 $\rightarrow abb$

Rightmost derivation:

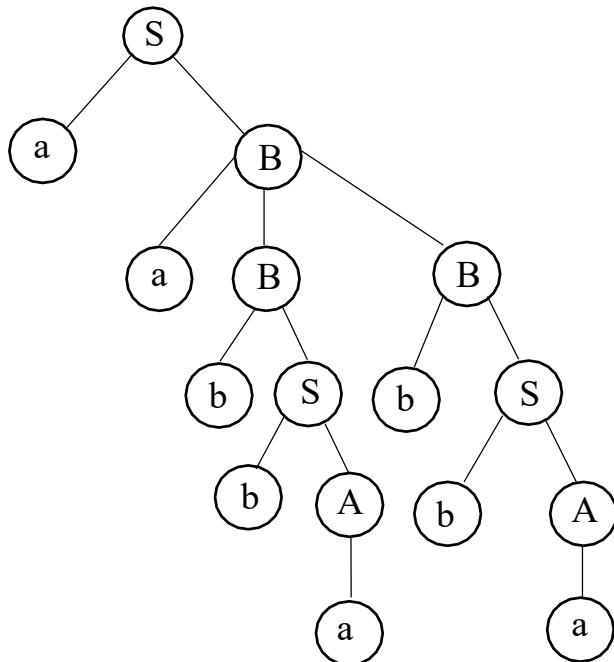
$S \rightarrow AB$
 $\rightarrow ASb$
 $\rightarrow A\wedge b$
 $\rightarrow aBb$
 $\rightarrow aSbb$
 $\rightarrow a\wedge bb$
 $\rightarrow abb$

Example 2:


Derive the string "aabbabba" for leftmost derivation and rightmost derivation using a CFG given by,

$S \rightarrow aB \mid bA$
 $A \rightarrow a \mid aS \mid bAA$
 $B \rightarrow b \mid bS \mid aBB$

Solution:


Leftmost derivation:

$S \rightarrow aB$
 $\rightarrow aaBB$
 $\rightarrow aabB$
 $\rightarrow aabbS$
 $\rightarrow aabbaB$
 $\rightarrow aabbabS$
 $\rightarrow aabbabbA$
 $\rightarrow aabbabba$

Rightmost derivation:

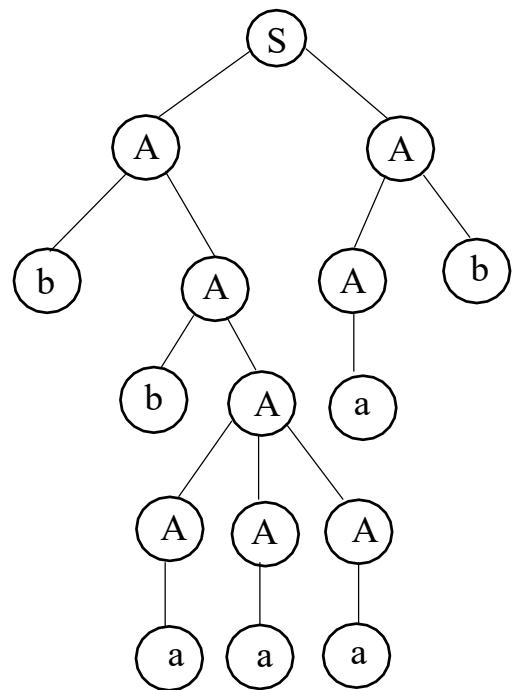
$S \rightarrow aB$
 $\rightarrow aaBB$
 $\rightarrow aaBbS$
 $\rightarrow aaBbbA$
 $\rightarrow aaBbba$
 $\rightarrow aabSbba$
 $\rightarrow aabbAbba$
 $\rightarrow aabbabba$

Ambiguity in Grammar

A grammar is said to be *ambiguous* if there exists more than one leftmost derivation or more than one rightmost derivation or more than one parse tree for the given input string.

If it gives the same tree derivative from the leftmost derivation or from rightmost derivation the grammar is called *unambiguous*.

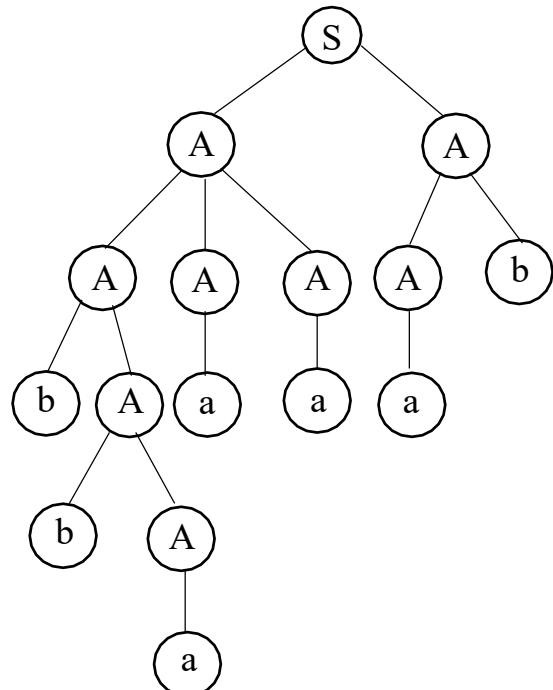
If the grammar has ambiguity, then it is not good for compiler construction. No method can automatically detect and remove the ambiguity, but we can remove ambiguity by re-writing the whole grammar without ambiguity.


Example: Let $G(L) = (\{S, A\}, \{a, b\}, P, S)$, where P is:

$S \rightarrow AA$
 $A \rightarrow AAA \mid bA \mid Ab \mid a$

- Is the string “bbaaaab” Accept or not?
- Is the grammar ambiguous or not?

(Left) $S \rightarrow \underline{AA}$
 $\rightarrow b\underline{AA}$
 $\rightarrow bb\underline{AA}$
 $\rightarrow bb\underline{A}AAA$


$\rightarrow bba\underline{A}AA$
 $\rightarrow bbaa\underline{A}A$
 $\rightarrow bbaaa\underline{A}$
 $\rightarrow bbaaa\underline{A}b$
 $\rightarrow bbaaaab$ Accept

(Left) $S \rightarrow \underline{A}A$

$\rightarrow \underline{A}AAA$
 $\rightarrow b\underline{A}AAA$
 $\rightarrow bb\underline{A}AAA$
 $\rightarrow bba\underline{A}AA$
 $\rightarrow bbaa\underline{A}A$
 $\rightarrow bbaaa\underline{A}$
 $\rightarrow bbaaa\underline{A}b$
 $\rightarrow bbaaaab$ Accept

The grammar is ambiguous

Example: Let the following grammar: $G(L) = (\{S\}, \{(,), \supset, \sim, p, q\}, P, S)$

$$S \rightarrow (S) \mid S \supset S \mid \sim S \mid p \mid q$$

- Is the string “ $(\sim p \supset (p \supset \sim q))$ ” Accept or not?
- Is the grammar ambiguous or not? **H.W**

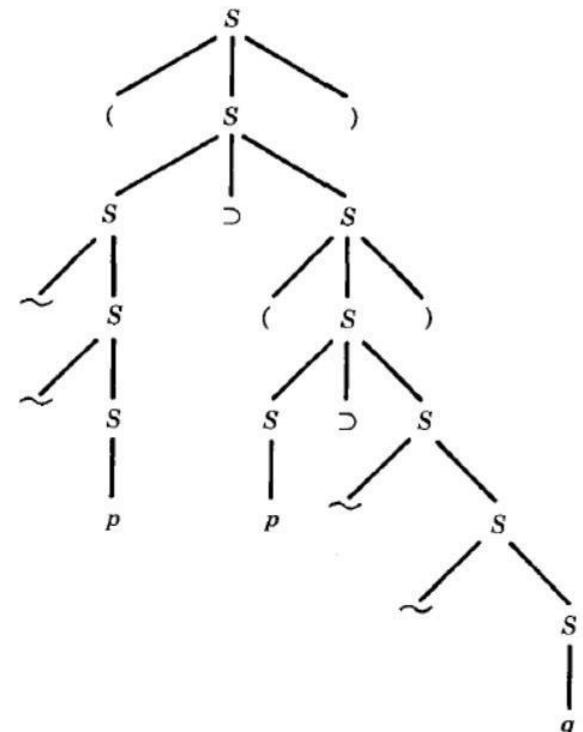
(left) $S \rightarrow (S)$

$$\rightarrow (S \supset S)$$

$$\rightarrow (\sim S \supset S)$$

$$\rightarrow (\sim \sim S \supset S)$$

$$\rightarrow (\sim \sim p \supset S)$$


$$\rightarrow (\sim \sim p \supset (S))$$

$$\rightarrow (\sim \sim p \supset (S \supset S))$$

$$\rightarrow (\sim \sim p \supset (p \supset S))$$

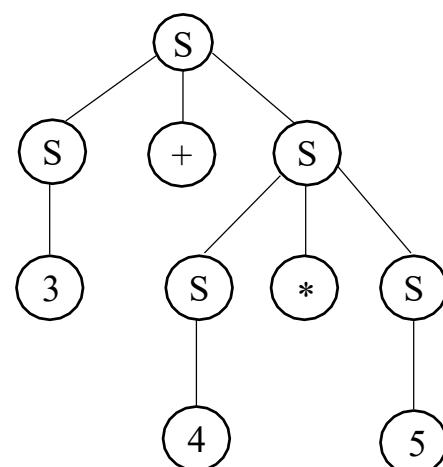
$$\rightarrow (\sim \sim p \supset (p \supset \sim S))$$

$$\rightarrow (\sim \sim p \supset (p \supset \sim \sim q)) \text{ Accept}$$

Example: Let the following grammar:

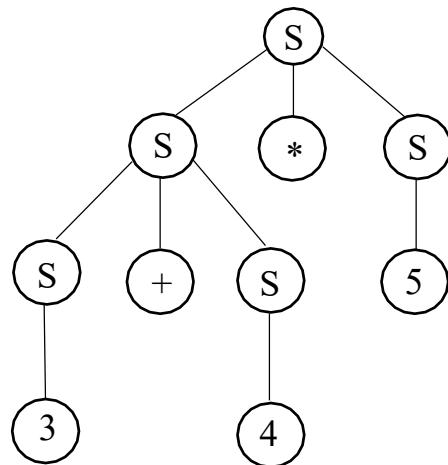
$$S \rightarrow S + S \mid S * S \mid \text{digit}$$

- Is the string “ $3 + 4 * 5$ ” Accept or not?
- Is the grammar ambiguous or not?


(Left) $S \rightarrow S + S$

$$\rightarrow 3 + S$$

$$\rightarrow 3 + S * S$$


$$\rightarrow 3 + 4 * S$$

$$\rightarrow 3 + 4 * 5 \text{ Accept}$$

(Left) $S \rightarrow S * S$
 $\rightarrow S + S * S$
 $\rightarrow 3 + S * S$
 $\rightarrow 3 + 4 * S$
 $\rightarrow 3 + 4 * 5$ Accept

The grammar is ambiguous

Homework: Let the following grammar:

$$S \rightarrow aSa \mid bSb \mid a \mid b \mid \Lambda$$

- Is the string “aabaa” Accept or not?
- Is the grammar ambiguous or not?