|1 &% Il & ks
AL MUSTAQBAL UNIVERSITY

DEPARTMENT OF CYBER SECURITY

SUBJECT:
SEARCHING AND SORTING ALGORITHMS
CLASS:

SECOND

LECTURER: M.SC.MUNTATHER AL-MUSSAWEE

LECTURE: (2)

SORTING METHODS

Department of Cyber Security
Searching And Sorting Algorithms — Lecture (2)

Second Stage

Bubble Sort

The bubble sort is easy to understand and program. The basic idea of bubble sort is
to pass through the file sequentially several times. In each pass, we compare each
element in the file with its successor i.e., X[i] with X[i+1] and interchange two
element when they are not in proper order. We will illustrate this sorting technique

by taking a specific example. Bubble sort is also called as exchange sort.

< EXAMPLE:

Consider the array x[n] which is stored in memory as shown below:

X[0] | X[1] | X[2] | X[3] [X[4] | X[5]

33 44 22 11 66 55

Suppose we want our array to be stored in ascending order. Then we pass through

the array 5 times as described below:
Pass 1: (first element is compared with all other elements).
We compare X[i] and X[i+1] fori=0, 1, 2, 3, and 4, and interchange X[i] and X[i+1]

if X[i] > X[i+1]. The process is shown below:

Department of Cyber Security
Searching And Sorting Algorithms — Lecture (2)

Second Stage

X[0] Remarks
33 i B |

44
44 | 66
55 | 66
33 22 11 44 | 55 | 66

The biggest number 66 is moved to (bubbled up) the right most position in the array.

Pass 2: (second element is compared).
i.e., we compare X[i] with X[i+1] for i=0, 1, 2, and 3 and interchange X[i] and X[i+1]

if X[i] > X[i+1]. The process is shown below:

X[0] X[1] | X[2] X[3] Remarks
33 22 11 24
22 33

11 33

33 44

44 55

22 11 33 44 55

The second biggest number 55 is moved now to X[4].
Pass 3: (third element is compared).

We repeat the same process, but this time we leave both X[4] and X[5]. By doing

this, we move the third biggest number 44 to X[3].

Page |3

Department of Cyber Security
Searching And Sorting Algorithms — Lecture (2)

&)
10 393100

Second Stage

X[0] Remarks

22 11 33
11 22
22 33
33
11 22 33

Pass 4: (fourth element is compared).

We repeat the process leaving X[3], X[4], and X[5]. By doing this, we move the
fourth biggest number 33 to X[2].

X[0] | X[1] Remarks

11 22
11 22
22

Pass 5: (fifth element is compared).

We repeat the process leaving X[2], X[3], X[4], and X[5]. By doing this, we move the
fifth biggest number 22 to X[1]. At this time, we will have the smallest number 11

in X[0]. Thus, we see that we can sort the array of size 6 in 5 passes.

For an array of size n, we required (n-1) passes.

Page | 4

Department of Cyber Security

2
5
2

L Searching And Sorting Algorithms — Lecture (2)

f Second Stage

< PROGRAM FOR BUBBLE SORT

Bubble Sort

#include <iostream:>
using namespace std;

{// Functieon to perform Bubble Sort
void bubbleSort(int arr[], int n} {

}

for (int 1 =@8; i <n - 1; i++) {
bool swapped = false; // Optimization: Track if a swap occurred
for (int j =8; j <n -1 -1; j++) {
if (arr[j] » arr[] + 1]) {
swap(arr[j], arr[j + 1]);
swapped = true;

¥

[/ If no swaps occurred, the array is already sorted
if (!swapped)
break:

// Function to print the array
void printArray(int arr[], int n) {

for (int 1 = @; 1 < n; i++)
cout << arr[i] << " ";
cout << endl;

f/f Main function
int main() {

int arr[] = {64, 34, 25, 12, 22, 11, 98};
int n = sizeof(arr) / sizeof(arr[@]};

cout << “Unsorted array: ";
printArray(arr, n);

bubbleSort{arr, n);

cout << “"Sorted array: ";
printArray{arr, n);

return @;

Page |5

ét\.»unv Bspu'

&
&
<

Gy

@‘»

< TiIME COMPLEXITY:

The bubble sort method of sorting an array of size n requires (n-1) passes and (n-1)

comparisons on each pass. Thus, the total number of comparisons is

(n-1) * (n-1) = n%- 2n + 1, which is O(n?). Therefore, bubble sort is very inefficient

when there are more elements to sorting.

Selection Sort

Selection sort will not require no more than n-1 interchanges. Suppose x is an array
of size n stored in memory. The selection sort algorithm first selects the smallest
element in the array x and place it at array position 0; then it selects the next
smallest element in the array x and place it at array position 1. It simply continues

this procedure until it places the biggest element in the last position of the array.

The array is passed through (n-1) times and the smallest element is placed in its

respective position in the array as detailed below:

Pass 1: Find the location j of the smallest element in the array

x [0], x[1], x[n-1], and then interchange x[j] with x[0]. Then x[0] is sorted.

Pass 2: Leave the first element and find the location j of the smallest element in

the sub-array x[1], x[2], x[n-1], and then interchange x[1] with x[j]. Then

x[0], x[1] are sorted.

Department of Cyber Security

Searching And Sorting Algorithms — Lecture (2)

&)
10 393100

Second Stage

Pass 3: Leave the first two elements and find the location j of the smallest element
in the sub-array x[2], x[3], x[n-1], and then interchange x[2] with x[j]. Then
x[0], x[1], x[2] are sorted.

Pass (n-1): Find the location j of the smaller of the elements x[n-2] and x[n-1], and
then interchange x[j] and x[n-2]. Then x[0], x[1], x[n-2] are sorted. Of course,

during this pass x[n-1] will be the biggest element and so the entire array is sorted.

«» TIME COMPLEXITY:

In general, we prefer selection sort in case where the insertion sort or the bubble
sort requires exclusive swapping. In spite of superiority of the selection sort over

bubble sort and the insertion sort (there is significant decrease in run time), its

efficiency is also O(n?) for n data items.

< EXAMPLE:

Remarks

find the first smallest element

Let us consider the following swap al1] & al]

find the second smallest element

example with 9 elements to
swap a[i] and a[j]

analyze selection Sort: Find the third smallest element

swap a[i] and a[j]

Find the fourth smallest element

swap a[i] and a[j]

Find the fifth smallest element

swap a[i] and a[j]

Find the sixth smallest element

swap a[i] and a[j]

Find the seventh smallest element

swap a[i] and a[j)

Find the eighth smallest element

swap a[i] and a[j]

The outer loop ends.

Department of Cyber Security

g
m
L]
s
f Second Stage

Searching And Sorting Algorithms — Lecture (2)

< PROGRAM FOR SELECTION SORT

Selection Sort Example

using namespace sTad,

/f Function to perform Selection Sort
void selectionSort(int arr[], int n) {
for (int 1 =8; 1 <n - 1; i++) {
int minIndex = i; // Assume the first element is the minimum

// Find the minimum element in the remaining array
for (int j =1 + 1; j < n; j++) {
if (arr[j] < arr[minIndex]) {
minIndex = j;

/{ Swap the found minimum element with the first element
swap({arr[i], arr[minIndex]);

{// Function to print the array
void printlArray(int arr[], int n) {
for (int 1 =@8; 1 < n; i++)
cout << arr[i] << " ";
cout << endl;

// Main function
int main() {
int arr[] = {64, 25, 12, 22, 11};
int n = sizeof(arr) / sizeof(arr[@]);

cout << “"Unsorted array: ";
printArray(arr, n);

selectionSort(arr, n);

cout << "Sorted array: ";
printArray(arr, n);

return 8;

Department of Cyber Security

g
m
L]
s
f Second Stage

Searching And Sorting Algorithms — Lecture (2)

< RECURSIVE PROGRAM FOR SELECTION SORT

#include <iostream:
using namespace std;

// Function to find the index of the minimum element in the array
int findMinIndex(int arr[], int start, int n) {
int minIndex = start;
for (int 1 = start + 1; 1 < n; i++) {
if (arr[i] < arr[minIndex])
minIndex = ij;
iy

return minIndex;

// Recursive function for Selection Sort
void recursiveselectionsort(int arr[], int start, int n) {
/f Base case: If start index reaches the last element, return
if (start »=n - 1)
return;

/f Find the minimum element in the remaining array
int minIndex = findMinIndex({arr, start, n);

f/ Swap the found minimum element with the first element of the unsorted part
swap(arr[start], arr[minIndex]);

/7 Recursively call the function for the remaining unsorted array
recursiveSelectionSort{arr, start + 1, n);

// Function to print the array
void printArray(int arr[], int n) {
for (int 1 = 8; i < n; i)
cout << arr[i] << " ";
cout << endl;

// Main function

int main() {
int arr[] = {64, 25, 12, 22, 11};
int n = sizeof(arr) / sizeof{arr[@]);
cout << "Unsorted array: ";
printArray(arr, n);

recursiveSelectionSort(arr, @, n);

cout << "Sorted array: ";

printArray(arr, n);

return @;

Qﬁ"‘“m“ UEPM'

Department of Cyber Security

Searching And Sorting Algorithms — Lecture (2)

) ¥
%90 393700

Second Stage

Quick Sort

The quick sort was invented in 1960. It was one of the first most efficient sorting
algorithms. It is an example of a class of algorithms that work by “divide and
conquer” technique. The quick sort algorithm partitions the original array by
rearranging it into two groups. The first group contains those elements less than
some arbitrary chosen value taken from the set, and the second group contains
those elements greater than or equal to the chosen value. The chosen value is
known as the pivot element. Once the array has been rearranged in this way with
respect to the pivot, the same partitioning procedure is recursively applied to each
of the two subsets. When all the subsets have been partitioned and rearranged, the
original array is sorted. The function partition() makes use of two pointers up and

down which are moved toward each other in the following fashion:

Repeatedly increase the pointer ‘up’ until a[up] >= pivot.
Repeatedly decrease the pointer ‘down’ until a[down] <= pivot.
If down > up, interchange a[down] with a[up]

Repeat the steps 1, 2 and 3 till the ‘up’ pointer crosses the ‘down’ pointer. If
‘up’ pointer crosses ‘down’ pointer, the position for pivot is found and place
pivot element in ‘down’ pointer position.

Department of Cyber Security

(=]
e
E
m
I

L Searching And Sorting Algorithms — Lecture (2)

&
r,aﬁ‘& Second Stage

The program uses a recursive function quicksort(). The algorithm of quick sort function
sorts all elements in an array ‘a’ between positions ‘low’ and ‘high’.

1. It terminates when the condition low >= high is satisfied. This condition will
be satisfied only when the array is completely sorted.

Here we choose the first element as the ‘pivot’. So, pivot = x[low]. Now it
calls the partition function to find the proper position j of the element x[low]
i.e. pivot. Then we will have two sub-arrays x[low], x[low+1],

and x[j+1], x[j+2], . . . x[high].

It calls itself recursively to sort the left sub-array x[low], x[low+1],

x[j-1] between positions low and j-1 (where j is returned by the partition
function).

It calls itself recursively to sort the right sub-array x[j+1], x[j+2], . . x[high]
between positions j+1 and high.

The time complexity of quick sort algorithm is of O(n log n).

Example:

Select first element as the pivot element. Move ‘up’ pointer from left to right in search
of an element larger than pivot. Move the ‘down’ pointer from right to left in search of
an element smaller than pivot. If such elements are found, the elements are swapped.

This process continues till the ‘up’ pointer crosses the ‘down’ pointer. If ‘up’ pointer

crosses ‘down’ pointer, the position for pivot is found and interchange pivot and
element at ‘down’ position.

Let us consider the following example with 13 elements to analyze quick sort:|

_. Department of Cyber Security
E
5
s

Searching And Sorting Algorithms — Lecture (2)

Remarks

[swap up &
down

swap up &
down

ap pivot

down

Iswap pivot
& down

[swap pivot
& down

[swap up &
down

Iswap pivot
B down

Iswap pivot
& down

2
5
2
$

Department of Cyber Security

Searching And Sorting Algorithms — Lecture (2)

|swap up &
DWW

Iswap pivot
& down

|swap pivot
& down

|swap up &
down

Iswap pivot
0w

[swap pivot
B down

Department of Cyber Security

g
m
L]
s
f Second Stage

Searching And Sorting Algorithms — Lecture (2)

* RECURSIVE PROGRAM FOR QUICK SORT:

#include <iostream>
using namespace std;

// Function to partition the array

int partition(int arr[], int low, int high) {
int pivot = arr[high]; // Choosing the last element as the pivot
int i = low - 1; // Pointer for the smaller element

for (int j = low; j < high; j++) {
if (arr[j] < pivot) {
it++;
swap(arr[i], arr[]j]); // Swap elements if they are smaller than the pivot

swap(arr[i + 1], arr[high]); // Move pivot to the correct position
return i + 1; // Return pivot index

// Recursive Quick Sort function
void quickSort(int arr[], int low, int high) {
if (low < high) {

int pivotIndex = partition(arr, low, high); // Find the pivot position

quickSort(arr, low, pivotIndex - 1); // Recursively sort left part
quickSort(arr, pivotIndex + 1, high); // Recursively sort right part

// Function to print the array
void printArray(int arr[], int n) {
for (int i = @; i < n; i++)

cout << arr[i] << " ";
cout << endl;

// Main function

int main() {
int arr[] = {64, 25, 12, 22, 11};
int n = sizeof(arr) / sizeof(arr[@]);
cout << "Unsorted array: “;
printArray(arr, n);

gquickSort(arr, @, n - 1);

"

cout << "Sorted array: ";
printArray(arr, n);

return 9;

