

 الــــــــــــــــــــــــــــــــــــسيبرانــــــــــــــــــــــــــــــــــــي الأمــــــــــــــــــــــــــن قــســــــــــم
 DEPARTMENT OF CYBER SECURITY

SUBJECT:

SEARCHING AND SORTING ALGORITHMS

CLASS:

SECOND

LECTURER: M.SC.MUNTATHER AL-MUSSAWEE

LECTURE: (2)

SORTING METHODS

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (2)

Second Stage

P a g e | 2

Bubble Sort

The bubble sort is easy to understand and program. The basic idea of bubble sort is

to pass through the file sequentially several times. In each pass, we compare each

element in the file with its successor i.e., X[i] with X[i+1] and interchange two

element when they are not in proper order. We will illustrate this sorting technique

by taking a specific example. Bubble sort is also called as exchange sort.

❖ EXAMPLE:

Consider the array x[n] which is stored in memory as shown below:

Suppose we want our array to be stored in ascending order. Then we pass through

the array 5 times as described below:

Pass 1: (first element is compared with all other elements).

We compare X[i] and X[i+1] for i = 0, 1, 2, 3, and 4, and interchange X[i] and X[i+1]

if X[i] > X[i+1]. The process is shown below:

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (2)

Second Stage

P a g e | 3

The biggest number 66 is moved to (bubbled up) the right most position in the array.

Pass 2: (second element is compared).

i.e., we compare X[i] with X[i+1] for i=0, 1, 2, and 3 and interchange X[i] and X[i+1]

if X[i] > X[i+1]. The process is shown below:

The second biggest number 55 is moved now to X[4].

Pass 3: (third element is compared).

We repeat the same process, but this time we leave both X[4] and X[5]. By doing

this, we move the third biggest number 44 to X[3].

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (2)

Second Stage

P a g e | 4

Pass 4: (fourth element is compared).

We repeat the process leaving X[3], X[4], and X[5]. By doing this, we move the

fourth biggest number 33 to X[2].

Pass 5: (fifth element is compared).

We repeat the process leaving X[2], X[3], X[4], and X[5]. By doing this, we move the

fifth biggest number 22 to X[1]. At this time, we will have the smallest number 11

in X[0]. Thus, we see that we can sort the array of size 6 in 5 passes.

For an array of size n, we required (n-1) passes.

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (2)

Second Stage

P a g e | 5

❖ PROGRAM FOR BUBBLE SORT

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (2)

Second Stage

P a g e | 6

❖ TIME COMPLEXITY:

The bubble sort method of sorting an array of size n requires (n-1) passes and (n-1)

comparisons on each pass. Thus, the total number of comparisons is

(n-1) * (n-1) = n2 - 2n + 1, which is O(n2). Therefore, bubble sort is very inefficient

when there are more elements to sorting.

Selection Sort

Selection sort will not require no more than n-1 interchanges. Suppose x is an array

of size n stored in memory. The selection sort algorithm first selects the smallest

element in the array x and place it at array position 0; then it selects the next

smallest element in the array x and place it at array position 1. It simply continues

this procedure until it places the biggest element in the last position of the array.

The array is passed through (n-1) times and the smallest element is placed in its

respective position in the array as detailed below:

Pass 1: Find the location j of the smallest element in the array

x [0], x[1], x[n-1], and then interchange x[j] with x[0]. Then x[0] is sorted.

Pass 2: Leave the first element and find the location j of the smallest element in

the sub-array x[1], x[2], x[n-1], and then interchange x[1] with x[j]. Then

x[0], x[1] are sorted.

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (2)

Second Stage

P a g e | 7

Pass 3: Leave the first two elements and find the location j of the smallest element

in the sub-array x[2], x[3], x[n-1], and then interchange x[2] with x[j]. Then

x[0], x[1], x[2] are sorted.

Pass (n-1): Find the location j of the smaller of the elements x[n-2] and x[n-1], and

then interchange x[j] and x[n-2]. Then x[0], x[1], x[n-2] are sorted. Of course,

during this pass x[n-1] will be the biggest element and so the entire array is sorted.

❖ TIME COMPLEXITY:

In general, we prefer selection sort in case where the insertion sort or the bubble

sort requires exclusive swapping. In spite of superiority of the selection sort over

bubble sort and the insertion sort (there is significant decrease in run time), its

efficiency is also O(n2) for n data items.

❖ EXAMPLE:

Let us consider the following

example with 9 elements to

analyze selection Sort:

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (2)

Second Stage

P a g e | 8

❖ PROGRAM FOR SELECTION SORT

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (2)

Second Stage

P a g e | 9

❖ RECURSIVE PROGRAM FOR SELECTION SORT

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (2)

Second Stage

P a g e | 10

Quick Sort

The quick sort was invented in 1960. It was one of the first most efficient sorting

algorithms. It is an example of a class of algorithms that work by “divide and

conquer” technique. The quick sort algorithm partitions the original array by

rearranging it into two groups. The first group contains those elements less than

some arbitrary chosen value taken from the set, and the second group contains

those elements greater than or equal to the chosen value. The chosen value is

known as the pivot element. Once the array has been rearranged in this way with

respect to the pivot, the same partitioning procedure is recursively applied to each

of the two subsets. When all the subsets have been partitioned and rearranged, the

original array is sorted. The function partition() makes use of two pointers up and

down which are moved toward each other in the following fashion:

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (2)

Second Stage

P a g e | 11

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (2)

Second Stage

P a g e | 12

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (2)

Second Stage

P a g e | 13

Department of Cyber Security

Searching And Sorting Algorithms – Lecture (2)

Second Stage

P a g e | 14

❖ RECURSIVE PROGRAM FOR QUICK SORT:

