J L S T an all a o AIA.
AL MUSTAQBAL UNIVERSITY

DEPARTMENT OF CYBER SECURITY
SUBJECT:
OBJECT ORIENTED PROGRAMMING (OOP)
CLASS:
SECOND
LECTURER:

DR. ABDULKADHEM A. ABDULKADHEM

LECTURE (9):

Inheritance in OOP (part 1)

Department of Cyber Security

Lecturer Name
Object Oriented Programming — Lecture (9)

Dr. Abdulkadhem A. Abdulkadhem
Second Stage
1. Introduction to Inheritance

\\‘\\“_RSWY
)
) 393100

g
%

&
(s

o Definition:

Inheritance is a mechanism in OOP that allows one class (derived class) to inherit the
properties and behaviors (members and functions) of another class (base class). The
derived class inherits all the capabilities of the base class but can add embellishments and

refinements of its own. The base class is unchanged by this process. The inheritance
relationship is shown in Figure 1.

AR

Base Class

Feature X Birds

Feature Y Birds feature

A—
Derived Class Eagle

Definedin
derived class Eagles feature

Feature X —— Birds feature
Featuresinherited

Feature A

frombase class
Feature ¥

Figure 1: Inheritance.

e Why Use Inheritance?
o Promotes code reusability.

o Establishes a hierarchical relationship between classes.
o Enables polymorphism.

An important result of reusability is the ease of distributing class libraries. A programmer

can use a class created by another person or company, and, without modifying it, derive other
classes from it that are suited to particular situations.

2. Derived Class and Base Class

There are two main reasons that we might not want to modifying the base class.

1) First, the base class works very well and has undergone many hours of testing and
debugging.

2) Second reason for not modifying the base class: We might not have access to its source
code, especially if it was distributed as part of a class library.

Syntax:

Page |2

Department of Cyber Security Lecturer Name

Object Oriented Programming — Lecture (9)
Dr. Abdulkadhem A. Abdulkadhem
Second Stage
class DerivedClass : accessSpecifier BaseClass {
// Additional members and functions for the derived class

b

Key Points:
o The accessSpecifier can be public, protected, O private.
o The derived class can access public and protected members of the base class,
depending on the access specifier used.
Example:

#include <iostream>
using namespace std;

// Base Class
class Base {
protected:
int baseValue;
public:
Base (int value) : baseValue(value) {}
void showBaseValue () {
cout << "Base value: " << baseValue << endl;
}
b
// Derived Class
class Derived : public Base {
public:
Derived (int wvalue) : Base(value) {}
void doubleBaseValue () {
basevValue *= 2;
cout << "Doubled Base value: " << baseValue << endl;
}
b
int main () {
Derived d(10);
d.showBaseValue () ;
d.doubleBaseValue () ;
return O;

Output:
Base value: 10
Doubled Base value: 20

3. The protecteda Access Specifier

We have increased the functionality of a class without modifying it. Let’s first review what we
know about the access specifies private and public. A member function of a class can always
access class members, whether they are public or private. But an object declared externally can
only invoke public members of the class. Private members are, well, private. This is shown in
Figure 2.

Page |3

Department of Cyber Security
Lecturer Name
Object Oriented Programming — Lecture (9)
Dr. Abdulkadhem A. Abdulkadhem

Second Stage

Member function of class A
can access both private and
public members.

(——P private - =

/—b public

_—

Object of class A can access
only public members of A,

Figure 2: Access specifiers without inheritance

A protected member, on the other hand, can be accessed by member functions in its own class
and in any class derived from its own class. It can’t be accessed from functions outside these

classes, such as main(). The situation is shown in Figure 3.

class Base

class Derv:
public Base

\ste ObjB
private
e R g

_protected
__public | <

Derv ObjD

Figure 3:Access specifiers with inheritance
4 . Inheritance and Accessibility

In C++ inheritance, the accessibility of members (variables and functions) of the base class
depends on both the access specifiers of those members in the base class (public, protected,
private) and the type of inheritance (public, protected, Or private). Here's how it works:

Department of Cyber Security Lecturer Name

Object Oriented Programming — Lecture (9)

3‘76’
0 3937703

Dr. Abdulkadhem A. Abdulkadhem

Second Stage

BaseC Tass FoncCTass Base lass
public: L public: b public: b/

protected: « protected: - protected: o

private: private: \ private:

- public protocsod \ o vase
inherimnce inheritance | < -
Dovned Clas Denved Class ' vt ed Ol

/
public: - public: 7 public:

4 -
protected: » protected: _J protected:

private: privare: privite: =

Case 1: Public Inheritance
When a derived class inherits from a base class using pub1ic inheritance:
e Public members of the base class remain public in the derived class.
« Protected members of the base class remain protected in the derived class.
e Private members of the base class are not directly accessible in the derived class.
Key Point:
Private members of the base class are not inherited in a way that allows direct access.
However, they are still part of the base class and can be accessed indirectly through public or
protected member functions provided by the base class.
Case 2: Protected Inheritance
When a derived class inherits using protected inheritance:
e Public members of the base class become protected in the derived class.

« Protected members of the base class remain protected in the derived class.
« Private members of the base class remain inaccessible directly in the derived class.

Key Point:

This inheritance type is useful when you want to limit access to the inherited public members but
still allow derived classes to use them.

Case 3: Private Inheritance
When a derived class inherits using private inheritance:
e Both public and protected members of the base class become private in the derived

class.
e Private members of the base class remain inaccessible directly in the derived class.

Page |5

Department of Cyber Security Lecturer Name

Object Oriented Programming — Lecture (9)

“‘\\‘Q_RSWY

&

2%
) 393100

¥ second Stage Dr. Abdulkadhem A. Abdulkadhem
o>

Key Point:

This inheritance type ensures that the base class's interface is completely hidden from outside
classes, and access is limited to the derived class's internal implementation.

Can a Derived Class Access Private Members of the Base Class?

No, private members of a base class are not directly accessible by a derived class, regardless of
the inheritance type. Private members are strictly encapsulated within the base class. However,
the derived class can access private members indirectly through public or protected member
functions provided by the base class.

Example: Here’s ICOMPICIGHCRAMBIE that demonstrates all types of inheritance (public,
protected, and private) and how access specifiers (public, protected, and private) behave
under each type:

#include <iostream>
using namespace std;
class Base {
private:
int privateVar; // Private: not accessible directly in any derived class
protected:
int protectedVar; // Protected: accessible in derived classes
public:
int publicVar; // Public: accessible to everyone
Base () : privateVar(10), protectedvVar (20), publicVar (30) {}
// Public function to access privateVar
int getPrivateVar () const {
return privateVar;
}
void setPrivateVar (int value) {
privateVar = value;
}
}i
// Derived class with Public Inheritance
class PublicDerived : public Base {
public:
void display () {
// cout << privateVar; // Error: privateVar is inaccessible
cout << "Public Inheritance:" << endl;
cout << "ProtectedVar: " << protectedVar << endl; // Accessible
cout << "PublicVar: " << publicVar << endl; // Accessible
cout << "PrivateVar (via getter): " << getPrivateVar () << endl;
}
}i
// Derived class with Protected Inheritance
class ProtectedDerived : protected Base ({
public:
void display () {
cout << "Protected Inheritance:" << endl;
// cout << privateVar; // Error: privateVar is inaccessible
cout << "ProtectedVar: " << protectedVar << endl; // Accessible

Page |6

o CURITY DEp, 4’4'
N %

Department of Cyber Security Lecturer Name

0 39371103

Object Oriented Programming — Lecture (9)

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

cout << "PublicVar: " << publicVar << endl; // Accessible (now protected)

}

// Derived class with Private Inheritance

class PrivateDerived : private Base {

public:

void display () {

cout << "Private Inheritance:" << endl;
// cout << privateVar; // Error: privateVar is inaccessible
cout << "ProtectedVar: " << protectedVar << endl; // Accessible
cout << "PublicVar: " << publicVar << endl; // Accessible (now private)

}i
// Trying to access members from outside the derived classes
void accessTest () {
PublicDerived publicObj;
cout << "\nAccess Test - Public Inheritance:" << endl;
publicObj.display () ;
cout << "Access publicVar: " << publicObj.publicVar << endl; //
Accessible
// publicObj.protectedVar; // Error: protectedVar is inaccessible
// publicObj.privateVar; // Error: privateVar is inaccessible
ProtectedDerived protectedObj;
cout << "\nAccess Test - Protected Inheritance:" << endl;
protectedObj.display() ;
// protectedObj.publicVar; // Error: publicVar is now protected
// protectedObj.protectedvVar; // Error: protectedvVar is
inaccessible
// protectedObj.privateVar; // Error: privateVar is inaccessible

PrivateDerived privateObj;
cout << "\nAccess Test - Private Inheritance:" << endl;
privateObj.display () ;
// privateObj.publicVar; // Error: publicVar is now private
// privateObj.protectedVar; // Error: protectedVar is inaccessible
// privateObj.privateVar; // Error: privateVar is inaccessible

}

int main() {

accessTest () ;
return 0;

Output:

Access Test - Public Inheritance:
Public Inheritance:

ProtectedVar: 20

PublicVar: 30

PrivateVar (via getter): 10
Access publicvar: 30

Access Test - Protected Inheritance:
Protected Inheritance:

Protectedvar: 20

PublicVar: 30

Access Test - Private Inheritance:
Private Inheritance:

ProtectedVar: 20

PublicVar: 30

Department of Cyber Security Lecturer Name

Object Oriented Programming — Lecture (9)

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

5. Dangers of protected

You should know that there’s a disadvantage to making class members protected. Say you’ve
written a class library, which you’re distributing to the public. Any programmer who buys this
library can access protected members of your classes simply by deriving other classes from
them. This makes protected members considerably less secure than private members. To avoid
corrupted data, it’s often safer to force derived classes to access data in the base class using only
public functions.

6. Overriding Member Functions

Overriding allows a derived class to provide a new implementation for a function that already
exists in the base class. The overridden function in the derived class must have the same name,
return type, and parameters as the function in the base class.

o Key Points:
o The base class function should be declared as virtual to enable overriding.
o Overriding is a cornerstone of runtime polymorphism.
@)

o Example:

#include <iostream>
using namespace std;

class Base {
public:
virtual void display () { // Virtual function in the base class
cout << "Base class display function" << endl;
}
}i
class Derived : public Base {
public:
void display () override { // Overriding the base class function
cout << "Derived class display function" << endl;

}
} 7
Base* basePtr;
Derived derivedObj;
basePtr = &derivedObj;

basePtr->display () ; // Calls the derived class's display function
return O;

}

Output:
Derived class display function

7. Accessing Base Class Members

e Using the Scope Resolution Operator (::): A derived class can explicitly call functions
or access members of the base class using the scope resolution operator.

Page | 8

Department of Cyber Security

Lecturer Name
Object Oriented Programming — Lecture (9)

Dr. Abdulkadhem A. Abdulkadhem
Second Stage

“‘\\‘Q_RSWY
%y

2%

) 393100

é?
K

(58

o« Example:

class Base {
public:
void show () {
cout << "Base class show function" << endl;
}
}i
class Derived : public Base {
public:
void show () {
cout << "Derived class show function" << endl;

Base: :show () ; // Calling the base class show function

}

b

int main () {
Derived obj;
obj.show () ;
return O;

}
Output:

Derived class show function
Base class show function

8. Types of Inheritance

Briefly mention the types of inheritance (next lecture):

Single Inheritance: One base class, one derived class.

Multiple Inheritance: Derived class inherits from multiple base classes.
Hierarchical Inheritance: Multiple derived classes inherit from a single base class.
Multilevel Inheritance: A class inherits from a derived class.

Hybrid Inheritance: A combination of two or more types of inheritance.

