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Language Grammar

Language Grammar are the foundations and principles; through which we can
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Computation Theory
link the vocabulary.

Vocabulary

Letters
Word |—— | Grammar —— | Language

sentence

Example: et the following grammar:

Sentence = Noun Phrase (NP) + Verb Phrase (VP) + Noun Phrase (NP)
NP = Article (Art) + Noun (N)

Art = a or an or the

Noun = Man, Car, House, Dog, ...

VP = eat, play, write, read, ...

“The boy hits the dog”
NP VP NP

Sentence

NP/VP\NP
AT /N
T‘\ N hits T‘l N

The boy the dog

Phrase Tree
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(Accept)
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Example: “The dog eats the house”
NP VP NP

el o) 0 13 0 e gl el Rl g (€ s a0 i oMl Al 6
[(semantic) el 5 (syntax) e &l Laa culasl e (a0 OsST Of a

Terminal Symbol (T): The words that cannot be replaced by anything are called
terminals.

Non-terminal Symbol (N): The words that must be replaced by other things we
call non-terminals.

Grammars

A grammar is a set of rules which are used to construct a language (combine
words to generate sentences).
Grammars are containing four things:
1- A finite set of Nonterminal Symbols (N).
2- A finite set of Terminal Symbols (T).
3- A finite set of production rules (P) of the formu —» v; (u,v) € (N U T)*
4- Starting symbol (S).

G(L)=(N,T,P,S
Grammar 4/‘)( ) ‘/( l )\\" Starting symbol

Language Nonterminal Terminal Production rule

Example: Let G(L) = ({S, A, B}, {a, b}, P, S) where P denoted as:

S—aA|bB|a|b rulel
A—aA|a rule 2
B—-DbB b rule 3

1- Is the string “aa” Accept or not?

S —aA using rule 1 (S — aA)
— aa using rule 2 (A — a)
The string is Accept

—
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2- Is the string “bbb” Accept or not?

S - bB using rule 1 (S = bB)
— bbB using rule 3 (B = bB)
— bbb using rule 3 (B — b)

The string is Accept

3- Is the string “aaba” Accept or not?
S —aA using rule 1 (S = aA)
— aaA using rule 2 (A — aA)
The string is not Accept

Example: Let G(L) = ({S, B, C}, {a, b, c}, P, S) where P denoted as:
S —-aSBC |aBC rulel

CB - BC rule 2

aB — ab rule 3

bB — bb rule 4

bC — bc rule 5

cC —>cc rule 6

1- Is the string “abc” Accept or not?

S - aBC using rule 1 (S — aBC)
— abC using rule 3 (aB — ab)
— abc using rule 5 (bC — bc)

The string is Accept

2- Is the string “a’b*c?” Accept or not?

S - aSBC using rule 1 (S — aSBC)
— aaBCBC using rule 1 (S = aBC)
— aaBBCC using rule 2 (CB — BC)
— aabBCC using rule 3 (aB — ab)
— aabbCC using rule 4 (bB — bb)
— aabbcC using rule 5 (bC — bc)
— aabbcc using rule 6 (cC — cc)

The string is Accept

—
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Homework: Let G(L) = ({S, B, C}, {a, b, ¢}, P, S) where P denoted as:

S - aSBC | aBC
CB - BC
aB — ab
bB — bb
bC — bc
cC —>cc

1- Is the string “a’b’c®” Accept or not?

2- Is the string “a’b®” Accept or not?

Context-Free Grammar (CFG)

CFG stands for context-free grammar. It is a formal grammar which is used to
generate all possible patterns of strings in a given formal language. Context-free
grammar G can be defined by four tuples as:

G=(N,T,P,S)
Where,

1

G is the grammar, which consists of a set of the production rule. It is used to
generate the string of a language.
T is the final set of a terminal symbol. It is denoted by lower case letters.

W N
1 1

N is the final set of a non-terminal symbol. It is denoted by capital letters.

P is a set of production rules, which is used for replacing non-terminals
symbols (on the left side of the production) in a string with other terminal or
non-terminal symbols (on the right side of the production).

5- Sis the start symbol which is used to derive the string. We can derive the string
by repeatedly replacing a non-terminal by the right-hand side of the production

=
1

until all non-terminal have been replaced by terminal symbols.

Example: Let G(L) = ({S}, {a}, P, S), where P is:

S —»aS rule 1

S —>A rule 2
If we apply production (S — aS) four times and then apply production (S =A) we
generate the following string: a*

—
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S — aS using rule 1
— aaS using rule 1
— aaaS using rule 1
— aaaaS using rule 1
— aaaaA using rule 2

The RE = a* can generate a set of string {A, a, aa, aaa,.....}. We can have a null
string because S is a start symbol and rule 2 gives S —A .

LS Al Al 5 ¢ RN (0 Al yo 51 6 il 5 gl e ae (gl )11 ey 4l el il o 3 D 2
+ef gl 03 (pa 4l
{a",n = 0 by n steps}

Example: Construct a CFG for the regular expression (0+1)*="0 100 01 11

Solution:
The CFG can be given by,
Production rule (P):
S—0S|1S
S—A
The rules are in the combination of 0's and 1's with the start symbol. Since (0+1)*
indicates {A, 0, 1, 01, 10, 00, 11, ...}.

Example: Construct a CFG for a language L = {wcw®: w € (a, b)*}.

Solution:

The string that can be generated for a given language is {aacaa, bcb, abcba, bacab,
abbcbba,.... }

The grammar could be:

S — aSa rule 1
S—bSb rule?2
S—c rule 3

Now if we want to derive a string "abbcbba", we can start with start symbols.

S — aSa
— abSba using rule 2
— abbSbba  using rule 2
— abbcbba  using rule 3

Thus any of this kind of string can be derived from the given production rules.
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Example: Construct a CFG for the language {a"b*" where n>=1}.

Solution:
The string that can be generated for a given language is {abb, aabbbb, aaabbbbbb,
cee )
The grammar could be: there is another grammar (H.W)

S — aSbb | abb
Now if we want to derive a string "aabbbb", we can start with start symbols.

S — aSbb

— aabbbb

Homework: Construct a CFG for the language {a™ b" | m >=n}

—
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