
Computation Theory

21

مــــــــــــــــــــــــــن الــــــــــــــــــــــــــــــــــــسيبرانــــــــــــــــــــــــــــــــــــي م ال ــــــــــس ــق
Department of Cyber Security

Subject: Computation Theory

Class: 3rd

Lecturer: Msc :Muntather AL-mussawee

Lecture: (5)
LANGUAGE GRAMMAR

Language Grammar

Language Grammar are the foundations and principles; through which we can

Computation Theory

22

link the vocabulary.

Vocabulary

Example: Let the following grammar:

Sentence = Noun Phrase (NP) + Verb Phrase (VP) + Noun Phrase (NP)

NP = Article (Art) + Noun (N)

Art = a or an or the

Noun = Man, Car, House, Dog, …

VP = eat, play, write, read, …

“The boy hits the dog”

NP VP NP

Sentence

NP VP NP

Art N hits Art N

The boy the dog

Phrase Tree

ووفق قواعد هذه اللغة هي مقبولة في المثال اعلاه الجملة مكونة من مفردات وقواعد تنتمي الى نفس اللغة، لذلك فأن هذه الجملة صحيحة

.(Accept)

Letters

Word

sentence

Grammar Language

Computation Theory

23

Example: “The dog eats the house”

NP VP NP

 الجملة ان نستنتج هذا من .معنى لها ليس المعنى ناحية من لكن صحيحة القواعد وفق اعلاه الجملة

 (semantic). والمعنى (syntax) القواعد هما مترابطين جزئين من تتكون ان يجب

Terminal Symbol (T): The words that cannot be replaced by anything are called

terminals.

Non-terminal Symbol (N): The words that must be replaced by other things we

call non-terminals.

Grammars

A grammar is a set of rules which are used to construct a language (combine

words to generate sentences).

Grammars are containing four things:

1- A finite set of Nonterminal Symbols (N).

2- A finite set of Terminal Symbols (T).

3- A finite set of production rules (P) of the form u → v ; (u, v) ∈ (N ∪ T)*

4- Starting symbol (S).

Grammar
G(L) = (N, T, P, S)

Starting symbol

Language Nonterminal Terminal Production rule

Example: Let G(L) = ({S, A, B}, {a, b}, P, S) where P denoted as:

S → aA | bB | a | b rule 1

A → aA | a rule 2

B → bB |b rule 3

1- Is the string “aa” Accept or not?

S → aA using rule 1 (S → aA)

→ aa using rule 2 (A → a)

The string is Accept

Computation Theory

24

2- Is the string “bbb” Accept or not?

S → bB using rule 1 (S → bB)

→ bbB using rule 3 (B → bB)

→ bbb using rule 3 (B → b)

The string is Accept

3- Is the string “aaba” Accept or not?

S → aA using rule 1 (S → aA)

→ aaA using rule 2 (A → aA)

The string is not Accept

Example: Let G(L) = ({S, B, C}, {a, b, c}, P, S) where P denoted as:

S → aSBC | aBC rule 1

CB → BC rule 2

aB → ab rule 3

bB → bb rule 4

bC → bc rule 5

cC → cc rule 6

1- Is the string “abc” Accept or not?

S → aBC using rule 1 (S → aBC)

→ abC using rule 3 (aB → ab)

→ abc using rule 5 (bC → bc)

The string is Accept

2- Is the string “a2b2c2” Accept or not?

S → aSBC using rule 1 (S → aSBC)

→ aaBCBC using rule 1 (S → aBC)

→ aaBBCC using rule 2 (CB → BC)

→ aabBCC using rule 3 (aB → ab)

→ aabbCC using rule 4 (bB → bb)

→ aabbcC using rule 5 (bC → bc)

→ aabbcc using rule 6 (cC → cc)

The string is Accept

Computation Theory

25

Homework: Let G(L) = ({S, B, C}, {a, b, c}, P, S) where P denoted as:

S → aSBC | aBC

CB → BC

aB → ab

bB → bb

bC → bc

cC → cc

1- Is the string “a3b3c3” Accept or not?

2- Is the string “a3b2” Accept or not?

Context-Free Grammar (CFG)

CFG stands for context-free grammar. It is a formal grammar which is used to

generate all possible patterns of strings in a given formal language. Context-free

grammar G can be defined by four tuples as:

G = (N, T, P, S)

Where,

1- G is the grammar, which consists of a set of the production rule. It is used to

generate the string of a language.

2- T is the final set of a terminal symbol. It is denoted by lower case letters.

3- N is the final set of a non-terminal symbol. It is denoted by capital letters.

4- P is a set of production rules, which is used for replacing non-terminals

symbols (on the left side of the production) in a string with other terminal or

non-terminal symbols (on the right side of the production).

5- S is the start symbol which is used to derive the string. We can derive the string

by repeatedly replacing a non-terminal by the right-hand side of the production

until all non-terminal have been replaced by terminal symbols.

Example: Let G(L) = ({S}, {a}, P, S), where P is:

S → aS rule 1

S →∧ rule 2

If we apply production (S → aS) four times and then apply production (S →∧) we

generate the following string: a4

Computation Theory

26

S → aS using rule 1

→ aaS using rule 1

→ aaaS using rule 1

→ aaaaS using rule 1

→ aaaa∧ using rule 2

The RE = a* can generate a set of string {∧, a, aa, aaa,. }. We can have a null

string because S is a start symbol and rule 2 gives S →∧ .

 ،والصيغة العامة للكلمات نلاحظ في هذه القواعد بأنه يمكن التكرار بأي عدد من الخطوات والتوقف في اي مرحلة من الاشتقاق

 :الناتجة من هذه القواعد

{an, n ≥ 0 by n steps}

Example: Construct a CFG for the regular expression (0+1)*= ^ 0 1 00 01 11

Solution:

The CFG can be given by,

Production rule (P):

S → 0S | 1S

S → ∧

The rules are in the combination of 0's and 1's with the start symbol. Since (0+1)*

indicates {∧, 0, 1, 01, 10, 00, 11, …}.

Example: Construct a CFG for a language L = {wcwR: w ∈ (a, b)*}.

Solution:

The string that can be generated for a given language is {aacaa, bcb, abcba, bacab,

abbcbba, }

The grammar could be:

S → aSa rule 1

S → bSb rule 2

S → c rule 3

Now if we want to derive a string "abbcbba", we can start with start symbols.

S → aSa

→ abSba using rule 2

→ abbSbba using rule 2

→ abbcbba using rule 3

Thus any of this kind of string can be derived from the given production rules.

Computation Theory

27

Example: Construct a CFG for the language {anb2n where n>=1}.

Solution:

The string that can be generated for a given language is {abb, aabbbb, aaabbbbbb,

....}.

The grammar could be: there is another grammar (H.W)

S → aSbb | abb

Now if we want to derive a string "aabbbb", we can start with start symbols.

S → aSbb

→ aabbbb

Homework: Construct a CFG for the language {am bn | m >= n}

	Language Grammar
	Context-Free Grammar (CFG)
	Solution:
	Solution:
	Solution:

