

P a g e | 1

Department of Cyber Security

Object Oriented Programming – Lecture (8)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

مــــــــــــــــــــــــــن م الاــــــــــســق
 الــــــــــــــــــــــــــسيبرانــــــــــــــــــــــــــــــــــــي

Department of Cyber Security

Subject:

Object Oriented Programming (OOP)

Class:

Second

Lecturer:

Dr. Abdulkadhem A. Abdulkadhem

Lecture: (8)

Arrays as Class Data Members

P a g e | 2

Department of Cyber Security

Object Oriented Programming – Lecture (8)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

In C++, arrays can be used as data members in a class. They allow you to store multiple values

or objects of the same type within a single class. This is particularly useful when handling

multiple elements that belong to the same category or when performing operations on a group of

objects.

This lecture covers:

1. Arrays as Class Data Members

2. Object Arrays

3. An Array of Pointers to Objects

1. Arrays as Class Data Members

When an array is used as a data member in a class, it can store multiple values related to that

class. Arrays can be of basic data types (like int or float) or user-defined types (like objects of

a class). This approach allows encapsulation of multiple values or objects within a single class

instance.

Example: Storing Marks of Multiple Subjects

In the following example, a class Student has an array marks as a data member to store the

scores of multiple subjects for a single student.

#include <iostream>

using namespace std;

class Student {

private:

 int marks[5]; // Array to store marks of 5 subjects

public:

 void setMarks(int m[]) {

 for (int i = 0; i < 5; ++i) {

 marks[i] = m[i];

 }

 }

 void displayMarks() const {

 cout << "Marks: ";

 for (int i = 0; i < 5; ++i) {

 cout << marks[i] << " ";

 }

 cout << endl;

P a g e | 3

Department of Cyber Security

Object Oriented Programming – Lecture (8)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

 }

};

int main() {

 Student stu1;

 int subjectMarks[5] = {90, 85, 76, 88, 92};

 stu1.setMarks(subjectMarks);

 stu1.displayMarks();

 return 0;

}

Explanation:

 The Student class has an array marks to store scores of 5 subjects.

 The setMarks function accepts an array as input and assigns it to the marks array.

 The displayMarks function outputs the marks stored in the array.

Using the constructor to initialize the array - see the appendix

2. Object Arrays

An Object Array is an array where each element is an object of a particular class. This is useful

when dealing with multiple instances of a class.

Example: Managing Multiple Employees Using an Object Array

In this example, the Company class has an array of Employee objects as a data member. Each

Employee object contains information about individual employees.

#include <iostream>

#include <string>

using namespace std;

class Employee {

private:

 string name;

 int id;

public:

 void setData(string n, int i) {

 name = n;

 id = i;

 }

 void display() const {

 cout << "Employee ID: " << id << ", Name: " << name << endl;

 }

};

class Company {

private:

 Employee employees[3]; // Array of Employee objects

public:

 void setEmployeeData() {

P a g e | 4

Department of Cyber Security

Object Oriented Programming – Lecture (8)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

 string name;

 int id;

 for (int i = 0; i < 3; ++i) {

 cout << "Enter ID and name for employee " << (i + 1) << ": ";

 cin >> id >> name;

 employees[i].setData(name, id);

 }

 }

 void displayEmployees() const {

 cout << "Company Employees:" << endl;

 for (int i = 0; i < 3; ++i) {

 employees[i].display();

 }

 }

};

int main() {

 Company company;

 company.setEmployeeData();

 company.displayEmployees();

 return 0;

}

Explanation:

 Company class contains an array of Employee objects.

 The setEmployeeData method allows input of employee details for each object in the

array.

 The displayEmployees method outputs the details of each employee in the array.

3. An Array of Pointers to Objects

An Array of Pointers to Objects is an array where each element is a pointer to an object. This

allows dynamic allocation and more flexibility, as you can decide when to create or delete

objects.

Example: Managing Library Books Using an Array of Pointers to Objects

In this example, the Library class has an array of pointers to Book objects. This allows creating

books only as needed.

#include <iostream>

#include <string>

using namespace std;

class Book {

private:

 string title;

 string author;

P a g e | 5

Department of Cyber Security

Object Oriented Programming – Lecture (8)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

public:

 Book(string t, string a) : title(t), author(a) {}

 void display() const {

 cout << "Title: " << title << ", Author: " << author << endl;

 }

};

class Library {

private:

 Book* books[5]; // Array of pointers to Book objects

 int count;

public:

 Library() : count(0) {}

 void addBook(string title, string author) {

 if (count < 5) {

 books[count] = new Book(title, author); // Dynamically

allocate a new Book

 ++count;

 } else {

 cout << "Library is full." << endl;

 }

 }

 void displayBooks() const {

 cout << "Library Books:" << endl;

 for (int i = 0; i < count; ++i) {

 books[i]->display();

 }

 }

 ~Library() {

 for (int i = 0; i < count; ++i) {

 delete books[i]; // Free allocated memory

 }

 }

};

int main() {

 Library library;

 library.addBook("1984", "George Orwell");

 library.addBook("To Kill a Mockingbird", "Harper Lee");

 library.displayBooks();

 return 0;

}

Explanation:

 Library has an array of pointers to Book objects.

 The addBook method dynamically allocates a new Book object and stores its pointer in

the array.

P a g e | 6

Department of Cyber Security

Object Oriented Programming – Lecture (8)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

 The displayBooks method displays details of each book.

 In the destructor of Library, we use delete to free the allocated memory, preventing

memory leaks.

Summary

 Arrays as Class Data Members: Arrays can store multiple values of basic or user-

defined types in a single class.

 Object Arrays: An array of objects within a class allows handling multiple instances of

that class type.

 Array of Pointers to Objects: This approach allows dynamic memory allocation, giving

flexibility in creating and deleting objects as needed.

MCQ for the lecture

1. Which of the following best describes an array used as a data member in a class?
A. A tool for storing unrelated variables

B. A structure that stores multiple values of the same type within one class instance

C. A pointer that must be allocated using new

D. A feature available only for primitive data types

E. A method for automatic memory management

2. Why are arrays commonly included as private data members in a class?
A. To allow global modification of the array elements

B. To expose internal data directly to all class users

C. To encapsulate multiple related values under one object

D. To eliminate the need for constructors

E. To force dynamic memory allocation

3. What characterizes an object array within a class?
A. It stores object names only as strings

B. It holds multiple objects of the same class type in a fixed-size structure

C. It allows objects of different classes to be stored together

D. It dynamically resizes based on program input

E. It eliminates the need for object initialization

4. In object arrays, how is memory for each object typically allocated?
A. Automatically on the stack as part of the containing class

B. Using new[] only

C. Using manual memory allocation for each element

D. By calling malloc() internally

E. Through runtime pointer assignment

P a g e | 7

Department of Cyber Security

Object Oriented Programming – Lecture (8)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

5. Which statement correctly describes an array of pointers to objects?
A. It stores objects directly, not addresses

B. It requires objects to be created dynamically

C. It prevents any object from being deleted

D. It forces compile-time initialization of all elements

E. It cannot store different object instances

6. Why might a programmer choose an array of pointers instead of an array of objects?
A. To ensure faster execution in all cases

B. To allow dynamic creation and deletion of objects as needed

C. To guarantee constant memory usage

D. To avoid using destructors

E. To prevent objects from being modified

7. A key difference between an object array and an array of object pointers is:
A. Only object arrays support encapsulation

B. Pointer arrays allow flexible memory management for each element

C. Object arrays can contain different data types

D. Pointer arrays cannot store polymorphic objects

E. Object arrays are created using new by default

8. Which of the following is a risk when using an array of pointers to objects?
A. Array index out-of-range errors disappear

B. The compiler automatically manages memory for all objects

C. Memory leaks can occur if allocated objects are not deleted

D. The array cannot store more than one element

E. Each pointer must reference the same object

9. Which advantage do arrays offer when used as class data members?
A. They allow the class to support an unlimited number of elements

B. They provide a structured way to store multiple homogeneous values

C. They remove the need for encapsulation

D. They automatically resize based on stored values

E. They allow storing unrelated types in the same container

10. What is one drawback of using fixed-size arrays inside a class?
A. They cannot be declared privately

B. Their size must be known at compile time

C. They cannot store integer values

D. They automatically overwrite old data

E. They cannot be used in constructors

P a g e | 8

Department of Cyber Security

Object Oriented Programming – Lecture (8)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

Appendix

Using a Constructor in the Student Class

There are two common ways to use a constructor with arrays as class data members:

✔ Method 1: Constructor With No Parameters (Default Initialization)

The constructor initializes the array internally.

Example

#include <iostream>

using namespace std;

class Student {

private:

 int marks[5]; // Array to store marks of 5 subjects

public:

 // Default constructor initializes the array

 Student() {

 for (int i = 0; i < 5; ++i) {

 marks[i] = 0;

 }

 }

 void displayMarks() const {

 cout << "Marks: ";

 for (int i = 0; i < 5; ++i) {

 cout << marks[i] << " ";

 }

 cout << endl;

 }

};

int main() {

 Student stu1; // Constructor sets all marks to 0

 stu1.displayMarks();

 return 0;

}

✔ Method 2: Parameterized Constructor (Passing an Array to the Constructor)

This is the most practical for your lecture: we pass the subject marks directly when creating the

object.

P a g e | 9

Department of Cyber Security

Object Oriented Programming – Lecture (8)

Second Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

Improved Example Using Constructor

#include <iostream>

using namespace std;

class Student {

private:

 int marks[5]; // Array to store marks of 5 subjects

public:

 // Parameterized constructor

 Student(int m[]) {

 for (int i = 0; i < 5; ++i) {

 marks[i] = m[i];

 }

 }

 void displayMarks() const {

 cout << "Marks: ";

 for (int i = 0; i < 5; ++i) {

 cout << marks[i] << " ";

 }

 cout << endl;

 }

};

int main() {

 int subjectMarks[5] = {90, 85, 76, 88, 92};

 Student stu1(subjectMarks); // Pass array to constructor

 stu1.displayMarks();

 return 0;

}

Explanation The constructor

 Student(int m[])receives an external array and copies its elements into the class data

member marks[].

 Since arrays cannot be directly assigned in C++, each element is copied individually

using a loop.

 This approach ensures encapsulation, as the marks array can only be initialized through

a controlled constructor.

