

 كلية العلـــــوم
 علوم الذكاء الاصطناعيم ــــــــــســق

Lecture 2

.............................

 Object Oriented Programmingالمادة :
 Second Stageالمرحلة :
 محمد شب م.م مصطفى اسم الاستاذ:

 Topic

 Introduction to Object-Oriented Programming (OOP)

 Fundamental concepts: Object, Class, Abstraction, Encapsulation,

Inheritance, Polymorphism

 Learning Objectives

 By the end of this lecture, students will be able to :

1. Define the principles of Object-Oriented Programming .

2. Differentiate between procedural programming and OOP .

3. Understand the concepts of objects and classes .

4. Explain the role of abstraction and encapsulation in OOP .

5. Describe the importance of inheritance and polymorphism .

 Theoretical Part

1. Introduction to Object Oriented Programming

 Definition: Object-Oriented Programming (OOP) is a programming

paradigm based on the concept of objects, which encapsulate both

data (attributes) and behavior (methods) .

 Unlike procedural programming, OOP emphasizes modularity,

reusability, and maintainability .

2. Object and Class

 Class: A blueprint or template from which objects are created. It

defines attributes (data members) and methods (member functions) .

 Object: An instance of a class that represents a real-world entity .

#include <iostream>

using namespace std;

class Student{

public :

 string name;

 int age;

 void display)({

 cout << "Name: " << name << ", Age: " << age << endl;

 }

}

int main)({

 Student s1;

 s1.name = "Ali;"

 s1.age = 20;

 s1.display)(;

}

3. Abstraction

 Definition: The process of hiding implementation details and

exposing only essential features .

 Abstraction allows programmers to focus on what an object does

rather than how it does it .

4. Encapsulation

Definition: The bundling of data and methods that operate on that data

into a single unit (class) .

Achieved in C++ by using access specifiers :

- public → accessible from outside the class .

- private → accessible only within the class .

- protected → accessible within the class and derived classes .

class BankAccount

 {

private : double balance;

public :BankAccount(double first) {

 balance = first;

}

 void deposit(double amount) {

 balance += amount;

 }

 double getBalance)({

 return balance;

}

};

5. Inheritance

 Definition: Mechanism by which one class (derived class) can

acquire the properties and behaviors of another class (base class) .

 Inheritance promotes code reusability and hierarchical classification .

6. Polymorphism

- Definition: The ability of different objects to respond to the same

message (function call) in different ways .

- Types of Polymorphism :

 Compile-time (Static) polymorphism → function overloading,

operator overloading .

 Run-time (Dynamic) polymorphism → achieved using virtual

functions .

 Practical Illustrations

Example 1 – Class and Object

#include <iostream<

using namespace std;

class Car {

public :

 string brand;

 int year;

 void start)({

 cout << brand << " started in " << year << endl;

}

};

int main)({

 Car c1;

 c1.brand = "Toyota;"

 c1.year = 2022;

 c1.start;)(

}

Example 2 – Encapsulation

#include <iostream>

using namespace std;

class Employee{

private :

 int salary;

public :

 void setSalary(int s) {

 salary = s;

 }

 int getSalary{)(

 return salary;

 }

};

int main{)(

 Employee e1;

 e1.setSalary(5000);

 cout << "Employee salary: " << e1.getSalary;)(

}

 Assignments

 Define a class Book with attributes (title, author, price) and a method

to display book information. Create two objects and display their

data .

 Implement a class Rectangle that encapsulates length and width as

private members, and provides public methods to calculate area and

perimeter .

 Write a program that demonstrates abstraction by designing a class

Shape with a pure virtual function calculateArea(), then implement it

in subclasses Circle and Square .

