| sy I & I
AL MUSTAQBAL UNIVERSITY

po—lall &uls
seliboVl clSUl pole o ®

Lecture 2

Object Oriented Programming : 83l
Second Stage : 4>yl

B, S VC T 1~ W9 p-p K] v, | o



= Topic

+ Introduction to Object-Oriented Programming (OOP)

+ Fundamental concepts: Object, Class, Abstraction, Encapsulation,
Inheritance, Polymorphism

= |earning Objectives
By the end of this lecture, students will be able to:

1. Define the principles of Object-Oriented Programming.

2. Differentiate between procedural programming and OOP.
3. Understand the concepts of objects and classes.

4. Explain the role of abstraction and encapsulation in OOP.
5. Describe the importance of inheritance and polymorphism.

= Theoretical Part
1. Introduction to Object Oriented Programming

+ Definition: Object-Oriented Programming (OOP) is a programming
paradigm based on the concept of objects, which encapsulate both
data (attributes) and behavior (methods).

+ Unlike procedural programming, OOP emphasizes modularity,
reusability, and maintainability.



2. Object and Class

+ Class: A blueprint or template from which objects are created. It
defines attributes (data members) and methods (member functions).
+ Object: An instance of a class that represents a real-world entity.

#include <iostream>

using namespace std;

class Student{
public:
string name;

int age;

void display (){

cout << "Name: " << name << ", Age: " << age << end|;



int main (){
Student s1;
sl.name = "Ali;"
sl.age = 20;

sl.display() ;

3. Abstraction

4+ Definition: The process of hiding implementation details and
exposing only essential features.

+ Abstraction allows programmers to focus on what an object does
rather than how it does it.

4. Encapsulation
Definition: The bundling of data and methods that operate on that data
into a single unit (class).

Achieved in C++ by using access specifiers:

- public — accessible from outside the class.
- private — accessible only within the class.
- protected — accessible within the class and derived classes.



class BankAccount

{

private :double balance;
public :BankAccount(double first) {

balance = first;

void deposit(double amount) {
balance += amount;

}

double getBalance () {

return balance;

b

5. Inheritance

+ Definition: Mechanism by which one class (derived class) can
acquire the properties and behaviors of another class (base class).

+ Inheritance promotes code reusability and hierarchical classification.



6. Polymorphism
- Definition: The ability of different objects to respond to the same
message (function call) in different ways.

- Types of Polymorphism:

= Compile-time (Static) polymorphism — function overloading,
operator overloading.

* Run-time (Dynamic) polymorphism — achieved using virtual
functions.

= Practical Hlustrations

Example 1 — Class and Object
#include <iostream>

using namespace std;

class Car {
public:
string brand;

int year;

void start (){

cout << brand << " started in " << year << end|;



b

int main (){

Carcl;

cl.brand = "Toyota;"
cl.year = 2022;

cl.start;()

Example 2 — Encapsulation
#include <iostream>
using namespace std;
class Employee{
private:

int salary;
public:

void setSalary(int s) {

salary = s;



int getSalary} ()

return salary;

b

int main} ()
Employee el;
el.setSalary(5000);

cout << "Employee salary: " << el.getSalary;()

= Assignments

+ Define a class Book with attributes (title, author, price) and a method
to display book information. Create two objects and display their
data.

+ Implement a class Rectangle that encapsulates length and width as
private members, and provides public methods to calculate area and
perimeter.

+ \Write a program that demonstrates abstraction by designing a class
Shape with a pure virtual function calculateArea(), then implement it
in subclasses Circle and Square.



