Lecture 9
Matplotlib — Part 2

Data Visualization Using Python
Prepared by: Assistant Lecturer Hadi Salah
Department of Artificial Intelligence

1. Recap of Part 1

In Part 1, we covered:
e Basic concepts of data visualization.
e Simple line, scatter, bar, and histogram plots.
e Titles, axis labels, grid, legend.
e Saving plots as image files.

Example (simple line plot recap):

import numpy as np
import matplotlib.pyplot as plt

np.linspace (0, 5, 50)
X k*x 2

X

y

plt.plot(x, y, label="y = x~2")
plt.xlabel ("x")

plt.ylabel("y")

plt.title("Recap: Simple Line Plot")
plt.grid(True)

plt.legend ()

plt.show ()

2. Figure and Axes Concepts

Matplotlib is organized around two main objects:
e Figure: The entire window or page where everything is drawn.
e Axes: The actual area where the data is plotted (a subplot).

Example: using the object-oriented (OO) interface.

import numpy as np
import matplotlib.pyplot as plt

X = np.linspace(0, 2*np.pi, 100)
y = np.sin(x)

fig, ax = plt.subplots() # fig: Figure, ax: Axes
ax.plot(x, y, label="sin(x)")

ax.set_title("Sine Function (00 Interface)")
ax.set_xlabel("x (radians)")

ax.set_ylabel ("sin(x)")

ax.grid(True)

ax.legend ()

plt.show ()

3. Subplots: Multiple Axes in One Figure

Subplots allow us to show multiple related plots in a single figure.

3.1 Using plt.subplot

e Syntax: plt.subplot(nrows, ncols, index).

e Index starts from 1 and goes to nrows X ncols.

import numpy as np
import matplotlib.pyplot as plt

X = np.linspace(0, 2*np.pi, 200)
y1 = np.sin(x)
y2 = np.cos(x)

plt.figure(figsize=(8, 4))

plt.subplot (1, 2, 1)
plt.plot(x, y1)
plt.title("sin(x)")
plt.grid(True)

plt.subplot (1, 2, 2)
plt.plot(x, y2, color="orange")
plt.title("cos(x)")
plt.grid(True)

plt.suptitle("Subplot Example Using plt.subplot")

plt.tight_layout ()
plt.show ()

3.2 Using plt.subplots

e Returns a Figure and an array of Axes.

e More flexible and recommended in new code.

import numpy as np
import matplotlib.pyplot as plt

X = np.linspace(0, 2*np.pi, 200)
y1 = np.sin(x)
y2 np.cos(x)

fig, axes = plt.subplots(2, 1, figsize=(6,

axes [0] .plot(x, y1)
axes [0] .set_title("sin(x)")
axes [0] . grid (True)

axes [1] .plot(x, y2, color="orange")
axes [1] .set_title("cos(x)")
axes [1] .grid (True)

6))

fig.suptitle("Subplot Example Using plt.subplots")

fig.tight_layout ()
plt.show ()

4. Customizing Plots: Style, Color, and Markers

We can control many visual aspects:
e Line color, style, and width.
e Marker type and size.
e Transparency (alpha).

Example:

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 10, 50)

y1
y2

plt

plt

plt
plt
plt
plt

= np.sin(x)

np.cos(x)

plot(x, y1, color="blue", linestyle="-", marker="o"
linewidth=2, markersize=5, label="sin(x)")

.plot(x, y2, color="red", linestyle="--", marker="s",

linewidth=2, markersize=5, alpha=0.7, label="cos(x)")

.xlabel ("x")

.ylabel ("Value")

.title("Customized Line Styles and Markers")
.grid (True)

plt.
plt.

legend ()
show ()

5. Multiple Plots on the Same Axes

We can overlay multiple data series on the same Axes.

import numpy as np
import matplotlib.pyplot as plt

X = np.linspace(0, 2*np.pi, 200)

y1
y2
y3

plt
plt
plt

plt
plt
plt
plt

np.sin(x)
np.sin (2*x)
np.sin (3*x)

.plot(x, yl, label="sin(x)")
.plot(x, y2, label="sin(2x)")
.plot(x, y3, label="sin(3x)")

.xlabel("x (radians)")
.ylabel ("Amplitude")
.title("Multiple Sine Waves")
.grid (True)

plt.
plt.

legend ()
show ()

6. Legends and Annotations

6.1 Legend Position

We can control where the legend appears.

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace (0, 2%np.pi, 200)
y = np.sin(x)

plt.plot(x, y, label="sin(x)")
plt.xlabel ("x"

plt.ylabel("sin(x)")
plt.title("Legend Position Example")

plt.legend (loc="upper right") # or "lower left", "center", etc.
plt.grid(True)
plt.show ()

6.2 Adding Text and Annotations

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace (0, 2%np.pi, 200)
y = np.sin(x)

plt.plot(x, y)

plt.xlabel ("x"
plt.ylabel("sin(x)")
plt.title("Annotation Example")
plt.grid(True)

Add text at a specific point
plt.text(np.pi, 0.0, "Zero crossing", ha="center", va="bottom",
fontsize=10, color="red")

Add an arrow annotation

plt.annotate ("Peak",
xy=(np.pi/2, 1.0),
xytext=(2, 1.2),
arrowprops=dict(facecolor="black", shrink=0.05))

plt.show ()

7. 3D Plotting

Matplotlib supports simple 3D plots using mpl toolkits.mplot3d.
Example: 3D surface plot.

’import numpy as np

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D # needed for 3D

= np.linspace (-3, 3, 50)

= np.linspace (-3, 3, 50)

, Y = np.meshgrid(x, y)

= np.sin(np.sqrt (X**2 + Y*x2))

N X< X

fig = plt.figure(figsize=(6, 5))
ax = fig.add_subplot (111, projection="3d")

ax.plot_surface(X, Y, Z, cmap="viridis")
ax.set_title("3D Surface Plot")
ax.set_xlabel ("X")

ax.set_ylabel ("Y")

ax.set_zlabel ("Z")

plt.show ()

8. Time Series Plots

We often plot data indexed by time (e.g., daily temperature, heart rate).
Example using Python datetime:

import matplotlib.pyplot as plt
import datetime as dt

dates = [
dt.date (2024, 1, 1),
dt.date (2024, 1, 2),
dt.date (2024, 1, 3),
dt.date (2024, 1, 4),
dt.date (2024, 1, 5),

]
values = [100, 105, 102, 110, 108]

plt.plot(dates, values, marker="o"
plt.xlabel("Date")

plt.ylabel ("Value")

plt.title("Simple Time Series Plot")
plt.grid(True)

plt.gcf () .autofmt_xdate () # Rotate date labels
plt.show ()

9. Matplotlib with Pandas

Pandas integrates directly with Matplotlib.
Example:

import pandas as pd
import matplotlib.pyplot as plt

data = {
"Day": [1, 2, 3, 4, 5],
"HeartRate": [72, 75, 78, 74, 76],
"BloodPressure": [120, 118, 122, 119, 1217,
}
df = pd.DataFrame (data)

Set index to day for prettier plot
df .set_index ("Day", inplace=True)

df .plot (kind="1line", marker="o")

plt.title("Heart Rate and Blood Pressure Over Days")
plt.xlabel ("Day")

plt.ylabel ("Value")

plt.grid(True)

plt.show ()

10. Heatmaps and Confusion Matrix

Heatmaps are useful to display matrices, e.g., confusion matrices in Al.
Example: confusion matrix for a binary classifier.

import numpy as np
import matplotlib.pyplot as plt

cm = np.array([[50, 10],

[5, 356]]) # rows: true class, columns:

plt.imshow(cm, cmap="Blues")
plt.colorbar (label="Count")

plt.title("Confusion Matrix")
plt.xlabel ("Predicted Class")
plt.ylabel ("True Class")

Add text inside each cell

for i in range(cm.shape[0]):
for j in range(cm.shape[1l]):
plt.text(j, i, cml[i, jI,

predicted

ha="center", va="center", color="black")

plt.show ()

11. Twin Axes (Two Y-Scales)

Sometimes we want to show two different scales on the same x-axis.

import numpy as np
import matplotlib.pyplot as plt

x = np.arange (1, 11)

temperature = np.array([36.5, 36.7, 36.9, 37.1, 37.0, 36.8,
36.6, 36.5, 36.4])

heart_rate = np.array([70, 72, 75, 78, 76, 74, 72, 71, 70,

fig, axl = plt.subplots ()
colorl = "tab:red"

axl.set_xlabel("Time (unit)")

axl.
.plot (x,
.tick_params (axis="y"

axl
axl

ax2

color2 =
ax2.
ax?2.
ax2.

plt.

set_ylabel ("Temperature (C)",
temperature,

= axl.twinx ()

"tab:blue"
set_ylabel ("Heart Rate (bpm)",
plot (x, heart_rate,

color=coloril,
labelcolor=colorl)

color=color2,

color=coloril)
marker="o")

color=color?2)
marker="s")

second axes sharing the same x-axis

tick_params (axis="y",

labelcolor=color2)

title("Twin Axes Example:

Temperature and Heart Rate")

fig.tight_layout ()
plt.show ()

12. Saving High-Quality Figures
For reports and publications, we often need high-resolution images.

e Use dpi parameter to control resolution.

e Use vector formats (PDF, SVG) when possible.

Example:

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace (0, 2%np.pi, 200)
y = np.sin(x)

plt.plot(x, y)
plt.title("High-Resolution Example")
plt.xlabel ("x")

plt.ylabel ("sin(x)")

plt.savefig("high_res_plot.png", dpi=300) # high DPI
plt.savefig("high_res_plot.pdf") # vector format
plt.show ()

13. Simple Animation (Concept)

Matplotlib can create simple animations using FuncAnimation.
Example (conceptual code):

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation

fig, ax = plt.subplots()
x = np.linspace(0, 2*np.pi, 200)
line, = ax.plot(x, np.sin(x))

def update(frame):
frame goes from O, 1, 2,
y = np.sin(x + 0.1 * frame)
line.set_ydata(y)
return line,

ani = FuncAnimation(fig, update, frames=100, interval=50,

plt.title("Animated Sine Wave")
plt.show ()

To save as GIF (requires additional dependencies):
ani.save("sine_wave.gif", writer="imagemagick")

blit=True)

14. Case Study: AI Model Visualization

In machine learning, we frequently visualize:

e Training and validation loss.

e Training and validation accuracy.
e Confusion matrix of predictions.

Example: training curves using subplots.

import numpy as np
import matplotlib.pyplot as plt

epochs = np.arange(1l, 11)

train_loss = np.exp(-0.3 * epochs) + 0.05*np.random.rand(len(epochs)
)

val_loss = np.exp(-0.28 * epochs) + O0.l1*np.random.rand(len(epochs)
)

train_acc
val_acc

.5 + 0.05*xepochs + 0.05*%np.random.rand(len(epochs))
.5 + 0.045%epochs + 0.05*np.random.rand(len(epochs))

fig, axes = plt.subplots(l, 2, figsize=(10, 4))

Loss subplot

axes [0] .plot (epochs, train_loss, marker="o", label="Train Loss")
axes [0] .plot (epochs, val_loss, marker="s", label="Val Loss")
axes [0] . set_xlabel ("Epoch")

axes [0] .set_ylabel("Loss")

axes [0] .set_title("Training and Validation Loss")

axes [0] .grid (True)

axes [0] . legend ()

Accuracy subplot

axes [1] .plot (epochs, train_acc, marker="o", label="Train Acc")
axes [1] . plot (epochs, val_acc, marker="s", label="Val Acc")
axes [1].set_xlabel ("Epoch")

axes [1].set_ylabel ("Accuracy")

axes [1] .set_title("Training and Validation Accuracy")

axes [1].grid (True)

axes [1].legend ()

fig.suptitle("AI Model Training Curves")
fig.tight_layout ()
plt.show ()

The confusion matrix visualization from Section 10 is also part of this case study.

10

