
Lecture 1 

Object Oriented Programming



Titles

• 1.Review of Functions and Parameter Transmission.

• 2.Function Overloading and Inline Functions.

• 3.Default Arguments, Pass by Reference, Return by Reference.



Learning Objectives

By the end of this lecture, students will be able to:

1- Define the concept of functions in C++.

2- Distinguish between different parameter passing techniques (by 

value, by reference).

3- Apply default arguments in function definitions.

4- Understand the concept of function overloading.

5- Implement inline functions to optimize execution.



Theoretical Part

1. Review of Functions

Definition: A function is a block of code that performs a 

specific task.

General Syntax:

return_type function_name(parameters) {

// body of function

}



Theoretical Part

2. Parameter Transmission

- Pass by Value: A copy of the variable is passed; changes inside the 

function do not affect the original variable.

- Pass by Reference : The address of the variable is passed; changes 

inside the function directly modify the original variable.

- Return by Reference: A function can return a reference instead of a 

value, allowing the returned value to be used as an alias of the original 

variable.



Theoretical Part

3. Default Arguments

- A parameter may be assigned a default value when the function is defined.

- If no argument is passed during a function call, the default value will be used.

Example:

int sum(int a, int b = 10) {

return a + b;

}

cout << sum(5);   // Output: 15

cout << sum(5,7); // Output: 12



Theoretical Part

4. Function Overloading

Multiple functions can have the same name but must differ in the number or type of 

parameters.

Example:

int add(int a, int b) {

return a + b;

}

double add(double a, double b) {

return a + b;

}



Theoretical Part

5. Inline Functions

- Inline functions instruct the compiler to replace the function call with the 

actual function code during compilation.

- This reduces the overhead of function calls, but is recommended only 

for small functions.

Example:

inline int square(int x) {

return x * x;

}



Practical Illustrations

Example 1 – Pass by Value vs Pass by Reference

#include <iostream>

using namespace std;

void byValue(int x) {

x = x + 10;

}

void byReference(int &y) {

y = y + 10;

}

int main() {

int a = 5, b = 5;

byValue(a);      // No change

byReference(b);  // Changes original value

cout << "a = " << a << endl; // 5

cout << "b = " << b << endl; // 15

}



Practical Illustrations

Example 2 – Function Overloading

#include <iostream>
using namespace std;

int multiply(int x, int y) {
return x * y;

}

double multiply(double x, double y) {
return x * y;

}

int main() {
cout << multiply(3, 4) << endl;      // 12
cout << multiply(2.5, 4.0) << endl;  // 10.0

}



Practical Illustrations

Example 3 – Inline Function

#include <iostream>
using namespace std;

inline int cube(int n) {
return n * n * n;

}

int main() {
cout << cube(3) << endl; // 27

}



Assignments

1. Write an inline function to compute the absolute value of 

an integer.

2. Write two overloaded functions with the same name: one 

that calculates the area of a rectangle (length × width) and 

another that calculates the area of a square (side × side).

3. Implement a program that demonstrates the difference 

between Pass by Value and Pass by Reference by doubling 

the value of a variable.




