

جامعة المستقبل
AL MUSTAQL UNIVERSITY

**كلية العلوم
قسم التقنيات الاحيائية الطبية
INDUSTRIAL MICROBIOLOGY**

Lec. 4

**Microbial Production of Enzymes
by**

Lec. Dr. Mohammed Z. Al-Murib

1. Introduction

Microbial enzyme production is one of the most significant applications of industrial microbiology. Microorganisms — bacteria, fungi, and yeasts — are used to synthesize enzymes that catalyze biochemical reactions in various industries, including pharmaceuticals, food, textiles, paper, and detergents.

Definition:

Enzymes are biological catalysts — mostly proteins — that accelerate chemical reactions without being consumed in the process.

Advantages of Microbial Enzymes:

- High yield in short time.
- Easy to manipulate genetically.
- Can grow on inexpensive substrates.
- Stable at extreme conditions (pH, temperature, salinity).
- Consistent supply and quality.

2. Types of Enzymes and Their Industrial Importance

Type of Enzyme	Source (Microbe)	Major Application
Amylases	<i>Bacillus subtilis, Aspergillus oryzae</i>	Starch processing, brewing, baking
Proteases	<i>Bacillus licheniformis, Aspergillus niger</i>	Detergents, leather, pharmaceuticals
Lipases	<i>Candida rugosa, Pseudomonas fluorescens</i>	Food, biodiesel, detergents

Type of Enzyme	Source (Microbe)	Major Application
Cellulases	<i>Trichoderma reesei, Aspergillus</i> spp.	Paper, textiles, biofuel production
Pectinases	<i>Aspergillus niger</i>	Juice clarification, textile
Laccases / Peroxidases	<i>Pleurotus</i> spp., <i>Phanerochaete chrysosporium</i>	Biobleaching, wastewater treatment
Glucose Isomerase	<i>Streptomyces</i> spp.	High-fructose corn syrup production

3. Microorganisms Used for Enzyme Production

A. Bacteria

- *Bacillus subtilis, B. licheniformis, B. amyloliquefaciens*: extracellular enzyme producers.
- *Streptomyces* spp.: source of oxidative and hydrolytic enzymes.

B. Fungi

- *Aspergillus niger, Trichoderma reesei*: produce cellulase, amylase, pectinase.
- *Penicillium* spp.: diverse enzyme profiles.

C. Yeasts

- *Candida rugosa, Saccharomyces cerevisiae*: lipases, invertase.

4. Fermentation Methods for Enzyme Production

Enzyme production typically uses **biotechnological fermentation** under controlled conditions.

A. Submerged Fermentation (SmF)

- Microbes grow in **liquid nutrient medium**.
- Ideal for bacteria and yeasts.
- Easier control of pH, temperature, and aeration.
- Common for **amylase, protease, lipase**.

B. Solid-State Fermentation (SSF)

- Growth on moist solid substrates without free-flowing water (e.g., wheat bran, rice husk).
- Suitable for **fungi**.
- Economical and produces concentrated enzymes.

C. Fed-Batch Fermentation

- Nutrients added gradually to avoid repression or substrate inhibition.
- Used for **high-yield enzyme production** and **metabolic control**.

5. Factors Affecting Enzyme Production

1. **Carbon Source:** Glucose, starch, maltose (inducers or repressors).
2. **Nitrogen Source:** Peptone, yeast extract, ammonium salts.
3. **pH and Temperature:** Optimal for each microbe (e.g., *Bacillus* prefers pH 7–9, 37–45°C).
4. **Dissolved Oxygen:** Aeration and agitation important in aerobic fermentations.
5. **Inducers:** Substrates that trigger enzyme synthesis (e.g., starch for amylase).
6. **Inhibitors:** Catabolite repression (e.g., glucose inhibiting amylase).
7. **Incubation Time:** Enzyme production peaks during late exponential or stationary phase.

6. Strain Improvement for Enhanced Enzyme Yield

To increase enzyme productivity, microbial strains are genetically or mutationally enhanced.

A. Mutation and Selection

- **Physical mutagens:** UV radiation.
- **Chemical mutagens:** Nitrosoguanidine (NTG), EMS.
- Mutants are screened for higher enzyme output.

B. Recombinant DNA Technology

- **Gene cloning:** Inserting enzyme-encoding genes into high-expression vectors.
- Example: Cloning *amyE* gene (amylase) into *E. coli* or *Bacillus*.
- **Expression optimization:** Using strong promoters and codon optimization.

C. CRISPR/Cas9 Gene Editing

- Allows **precise modification** of regulatory regions.
- Enhances secretion pathways or enzyme stability.
- Example: CRISPR-mediated overexpression of cellulase genes in *Trichoderma reesei*.

7. Downstream Processing of Enzymes

After fermentation, enzymes must be separated and purified.

Steps:

1. **Cell Separation:** Centrifugation or filtration.
2. **Extraction:** For intracellular enzymes, cell disruption is needed.
3. **Concentration:** Ultrafiltration or precipitation (ammonium sulfate).
4. **Purification:** Chromatography (ion exchange, affinity).
5. **Stabilization:** Addition of stabilizers (glycerol, Ca^{2+}).

8. Enzyme Formulation and Immobilization

- **Drying methods:** Spray drying or freeze drying for storage stability.
- **Immobilization:** Fixing enzymes onto solid supports (e.g., agarose beads, silica) to allow reuse.
- Used in continuous reactors (e.g., glucose isomerase columns).

9. Applications of Microbial Enzymes

Industry	Application	Examples
Food & Beverages	Brewing, baking, juice clarification	Amylase, Pectinase
Textile	Fabric softening, desizing	Cellulase, Amylase
Detergent	Stain removal	Protease, Lipase
Paper & Pulp	Biobleaching	Xylanase, Laccase
Pharmaceutical	Drug modification	Lipase, Protease
Biofuel	Biomass hydrolysis	Cellulase, Amylase