

Confidence Intervals & Margin of Error

- Course: Biostatistics / Research Methods
- Prepared by: [Hawraa Aead Ali]

Learning Objectives

- By the end of this lecture, students will be able to:
 - • Define a confidence interval (CI)
 - • Explain margin of error
 - • Understand the meaning of the confidence level
 - • Calculate a CI for a population mean
 - • Interpret confidence intervals correctly

What is a Confidence Interval?

- A confidence interval (CI) is:
 - • A range of values
 - • Constructed from sample data
 - • Likely to contain the true population parameter
- Example: A 95% CI for the mean height is (160–170 cm).

Why Do We Use Confidence Intervals?

- Confidence intervals help to:
 - • Quantify uncertainty
 - • Provide more information than a point estimate
 - • Support decisions in research & medicine
 - • Understand population parameters using samples

Components of a CI

- A CI consists of:
- 1. Point Estimate (e.g., sample mean \bar{x})
- 2. Margin of Error (ME)
- Formula: $CI = \text{Point Estimate} \pm ME$

Margin of Error

- Margin of Error measures potential difference between sample estimate and true population value.
- Formula: $ME = Z \times (\sigma / \sqrt{n})$
- Z depends on confidence level.

Z-Scores for Common Confidence Levels

- Confidence Level → Z-score:
 - • 90% → 1.645
 - • 95% → 1.96
 - • 99% → 2.576

Example Calculation

- Sample of 50 students:
- Mean = 70 kg, SD = 8 kg, 95% CI:
- $ME = 1.96 \times (8/\sqrt{50}) \approx 2.2$
- $CI = 70 \pm 2.2 \rightarrow (67.8, 72.2)$
- Interpretation: True mean lies within this range.

Interpretation Mistakes

- Incorrect: “There is a 95% probability the mean is inside the interval.”
- Correct: “95% of intervals constructed this way will contain the true mean.”

What Affects CI Width?

- CI becomes wider with:
 - Higher confidence level
 - Higher standard deviation
- CI becomes narrower with:
 - Larger sample size

CI in Real Research

- Applications:
 - • Medical trials
 - • Public health surveys
 - • Biology/ecology studies
 - • Polling and statistics
- Example: Drug A improved symptoms by 15% (95% CI: 10–20%).

Summary

- $CI = \text{estimate} \pm \text{margin of error}$
- ME depends on Z, SD, and sample size
- Higher confidence \rightarrow wider CI
- CI shows uncertainty, not probability

Practice Questions

- 1. Mean = 120, SD = 20, n = 40 → compute 95% CI.
- 2. How does increasing sample size affect CI?
- 3. Why is the 99% CI wider than the 95%?

Thank You