

Ministry of Higher Education and Scientific Research
AL-MUSTAQBAL University College of Science
Department of Biochemistry

Physical Chemistry

Lecture 4

Scholar year 2025-2026
First semester

Kinetic of Second Order Reaction

B_y

Dr. Assel Amer Hadi

2nd order reaction with different initial concentration of reactant

- Initial conc. of A and B are a and b and after time t $(a-x)$ and $(b-x)$ are left , so

$$\frac{dx}{dt} = k[A][B]$$

$$\frac{dx}{dt} = k(a - x)(b - x)$$

Then ,after integration

$$\frac{1}{(a-b)} \left[\ln \frac{b.(a-x)}{a.(b-x)} \right] = kt$$

2nd order reaction with equal concentration of reactant

- Initial conc. of A and B are mole/dm⁻³ and after time t (a-x) are left for both

$$\frac{dx}{dt} = k [A][B]$$

$$\frac{dx}{dt} = k(a - x)(a - x)$$

$$= k(a - x)^2$$

Then, after integration

$$\frac{x}{a(a-x)} = kt$$

Half life and second order reaction

- If conc. Are same, then

$$kt = \frac{x}{a(a-x)}$$

$$t = \frac{1}{k} \cdot \frac{x}{a(a-x)}$$

when , $x = \frac{a}{2}$ then, $t = \frac{t}{2}$

$$\text{So, } t_2^1 = \frac{1}{k} \cdot \frac{a/2}{a(a - \frac{a}{2})}$$

$$[t_2^1]_2 = \frac{1}{ka}$$

The half life depends on initial concentration 'a'

If k and k' are same then order is second

Thank
you

