

Organic Chemistry

2nd stage

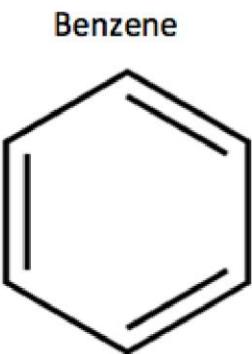
Asst. Lect.Zahraa Hazim Hamid

Lecture 1: Aromatic compound

Department of Biochemistry

2025-2026

List of Contents


Item	Subject	Page No.
1.1	Aromatic compound	3
1.2	Classification of aromatic compound	4
1.3	Nomenclature of aromatic compounds	7

1.1 Aromatic compound

Aromatic compounds are unusually **stable** and have important chemical and synthetic uses. But, what makes a compound aromatic? A short list of rules, **discovered by Eric Huckel** in the 1930's, lists the properties of aromatic compounds.

The Huckel aromaticity rules are:

1. Molecule is cyclic
2. Have one p orbital per atom of the ring (conjugated)
3. Be planar, in an sp^2 hybridized orbital, over every atom of the ring
4. Have a closed loop of $4n+2$ pi-bond electrons, where n is equal to any integer (0,1,2,3,...)

Since benzene has 6 pi electrons:

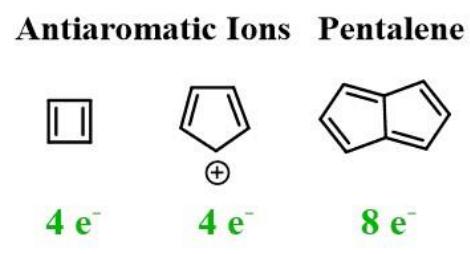
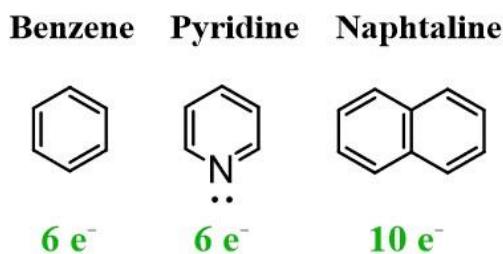
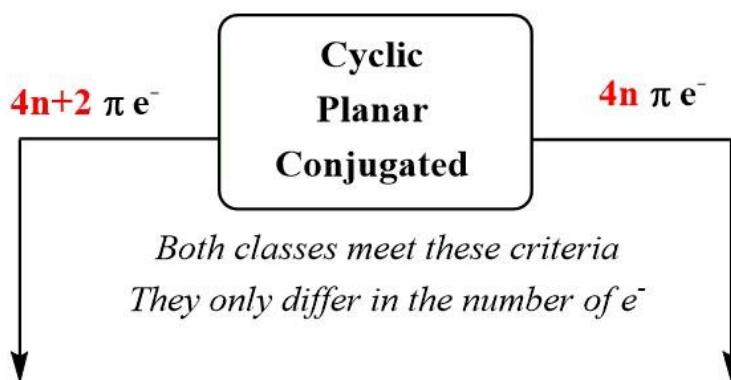
$$4n + 2 = 6$$

Find n:

$$4n + 2 = 6$$

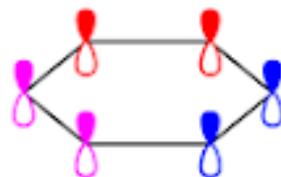
$$4n = 6 - 2$$

$$4n = 4$$




$$n = 1$$

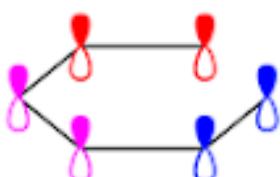
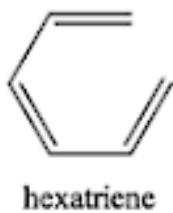
An aromatic compound follows Huckel's rule if n is equal to zero or a positive whole number.

Benzene is aromatic

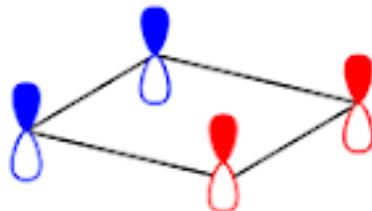

1.2 Classification of aromatic compound

Classification of Aromatic and Antiaromatic Compounds

Aromatic



Antiaromatic

1. Cyclic
2. p -orbital for each member of the ring
3. Planar ring (sp^2 hybridized)
4. $4n+2 \pi$ -bond electron count.


Aromatic

1. NOT Cyclic
2. p -orbital for each member of the ring
3. Planar ring (sp^2 hybridized)
4. $4n+2 \pi$ -bond electron count.

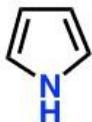
Non-Aromatic

1. Cyclic
2. p -orbital for each member of the ring
3. Planar ring (sp^2 hybridized)
4. Closed $4n \pi$ -bond electron count.

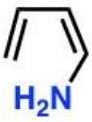
Anti-Aromatic


Four Rules For Aromaticity

Condition #1: The molecule must be cyclic No exceptions!


cyclic

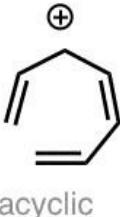
Benzene
Aromatic


acyclic

(Z)-1,3,5 hexatriene
Not aromatic

cyclic

Pyrrole
Aromatic



acyclic

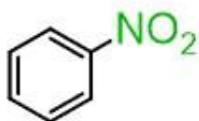
Not aromatic

"Tropylium" ion
Aromatic

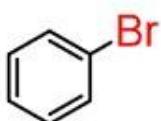
acyclic

Not aromatic

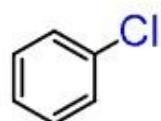
cyclohexene
(not aromatic)

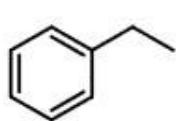


tetrahydrofuran
(not aromatic)

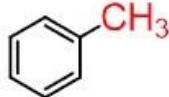

Just to be clear: not all cyclic molecules are aromatic...

1.3 Nomenclature of aromatic compounds

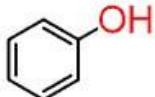

common names


nitrobenzene

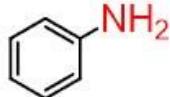
bromobenzene

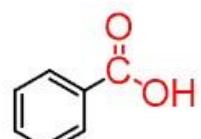


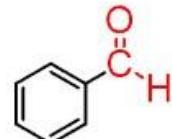
chlorobenzene

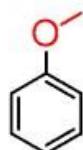


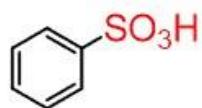
ethylbenzene

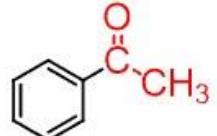

Common IUPAC names of monosubstituted aromatic compounds

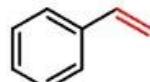

Toluene

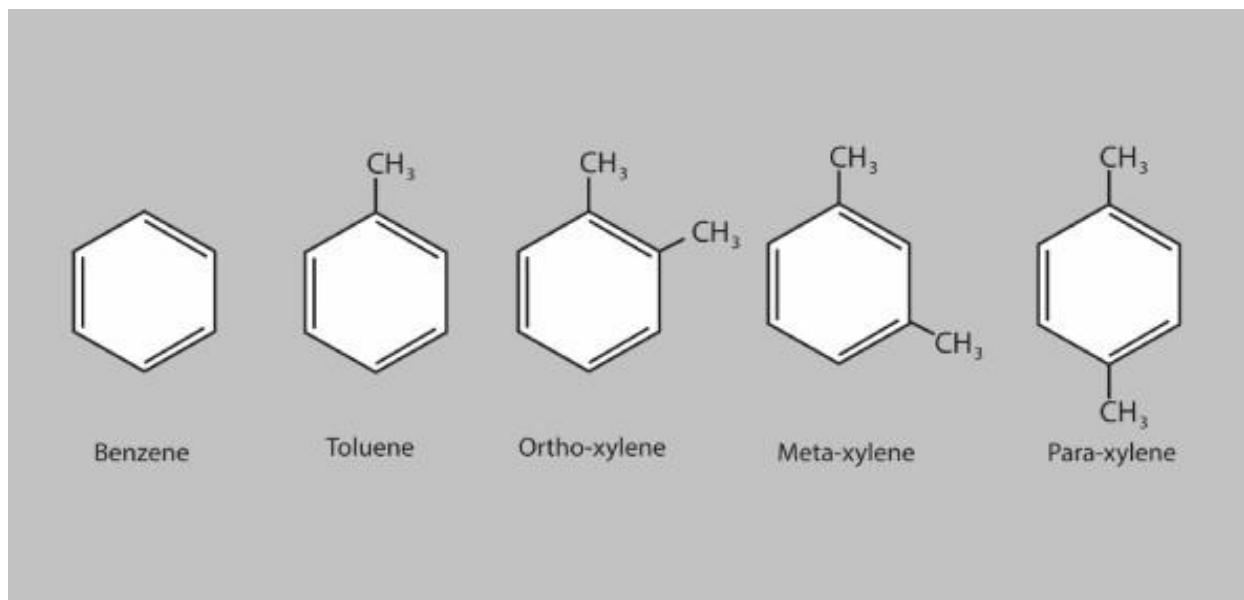
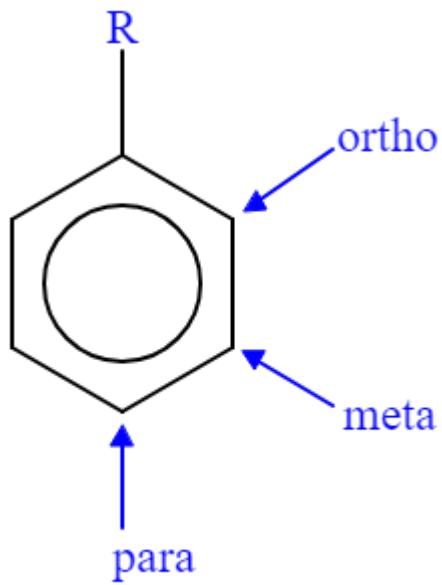

Phenol

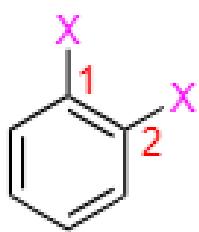

Aniline


Benzoic acid

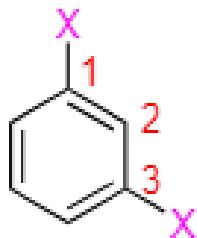

Benzaldehyde


Anisole

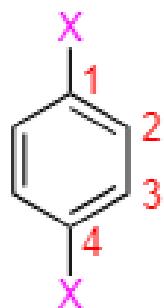


Benzenesulfonic acid

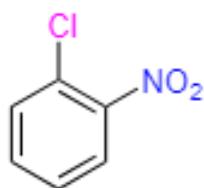


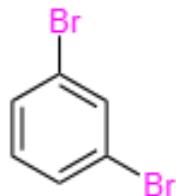
Acetophenone

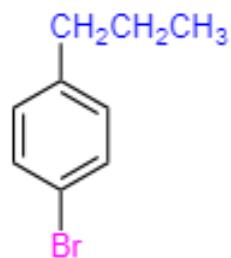


Styrene




ortho-Disubstituted
(1,2)


meta-Disubstituted
(1,3)


para-Disubstituted
(1,4)

ortho-Chloronitrobenzene

meta-Dibromobenzene

para-Bromopropylbenzene