

Ministry of Higher Education and Scientific Research
AL-MUSTAQBAL UNIVERSITY College of Science
Department of Biochemistry

Physical Chemistry

Lecture 5

Scholar year 2025-2026
First semester

Temperature and reaction rate

By

Dr. Assel Amer Hadi

Temperature and reaction rate

A- Ability to meet:

(molecules that are well mixed will have a greater chance of colliding)

Concentration of reactants:

(more molecules means more collisions)

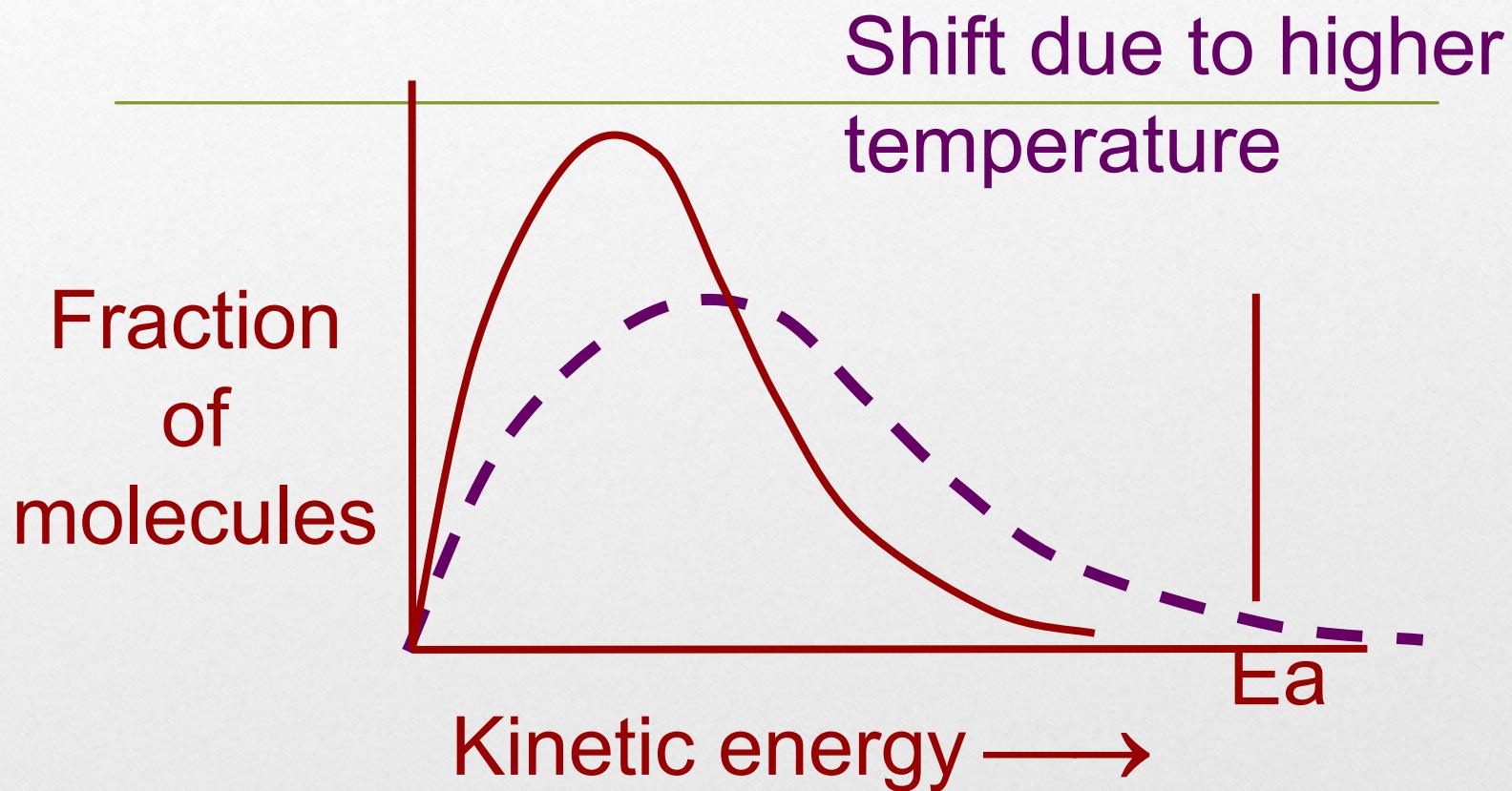
Temperature:

(faster moving molecules means more collisions per unit of time).

Temperature and reaction rate

By increasing the temperature, a small number of molecules reach E_a .

The reaction is **exothermic**, further increasing temperature and causing more molecules to reach E_a , etc.

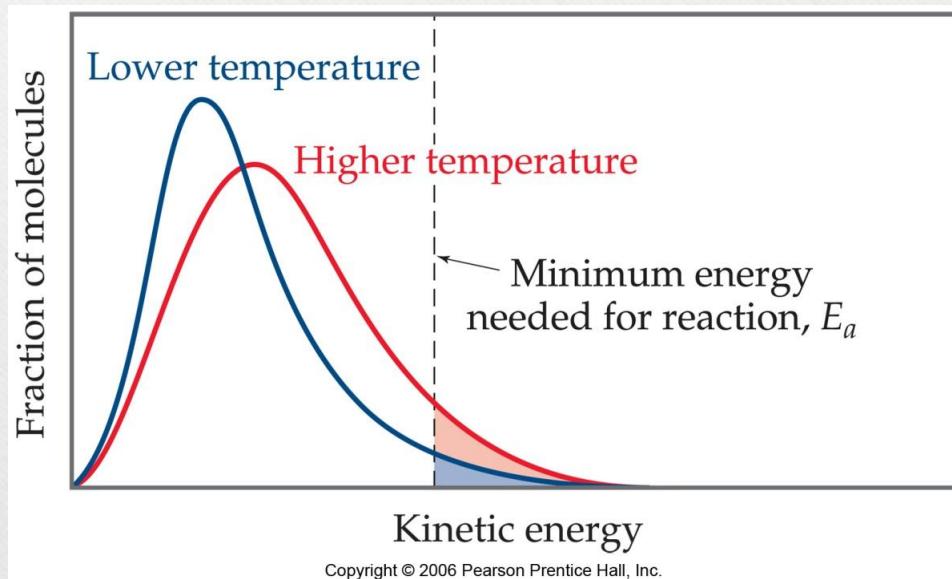


Maxwell–Boltzmann Distributions

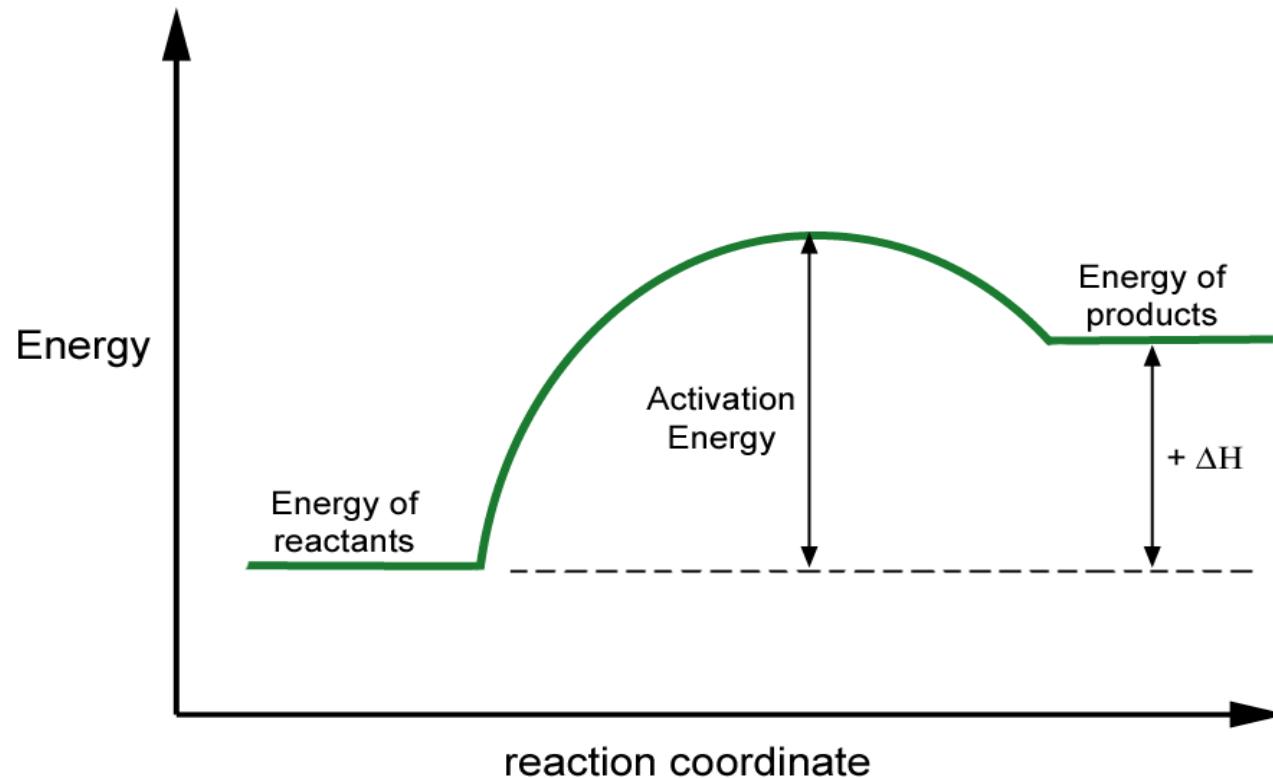
This fraction of molecules can be found through the expression

$$f = e^{\frac{-E_a}{RT}}$$

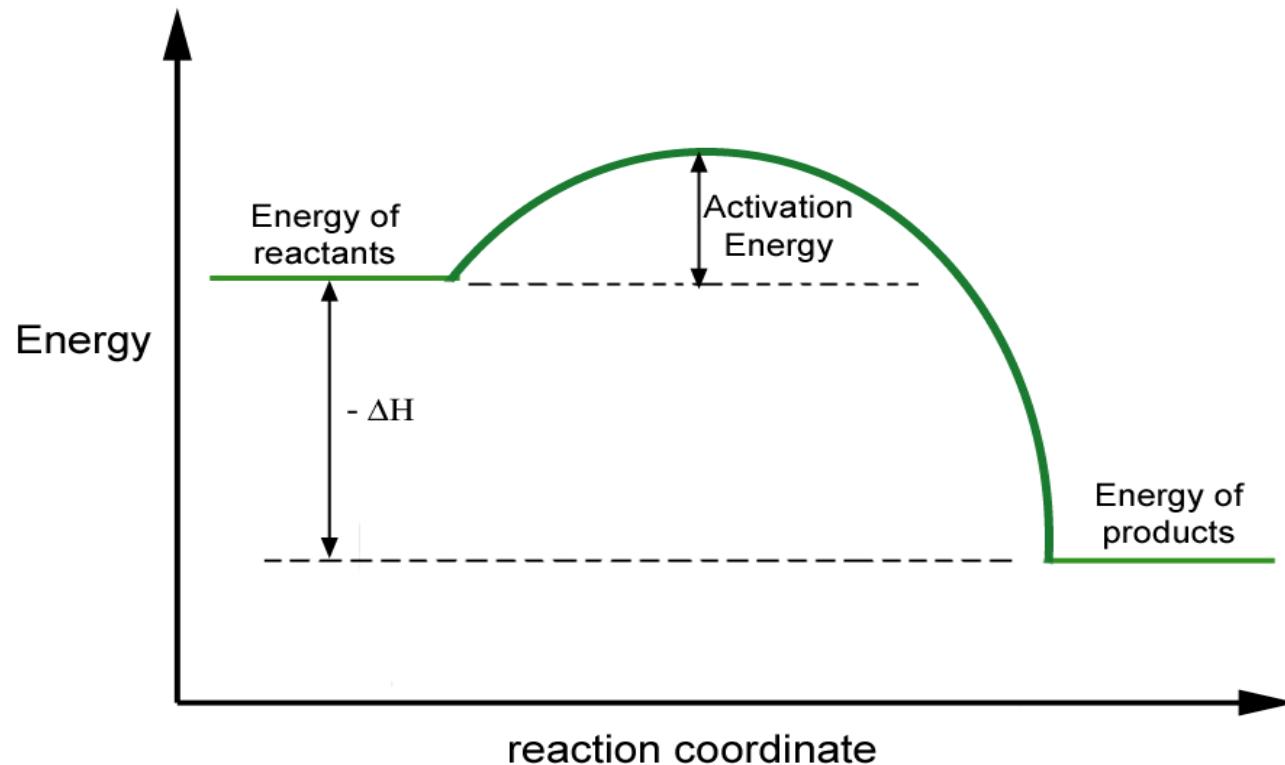
where R is the gas constant and T is the Kelvin temperature.



Endothermic Reactions



Exothermic Reactions



The Arrhenius Equation

$$k = A e^{-E_a / RT}$$

- k = rate constant at temperature T
- A = frequency factor
- E_a = activation energy
- R = Gas constant, $8.31451 \text{ J/K}\cdot\text{mol}$

The Arrhenius Equation, Rearranged

$$\ln(k) = -\frac{E_a}{R} \left(\frac{1}{T} \right) + \ln(A)$$

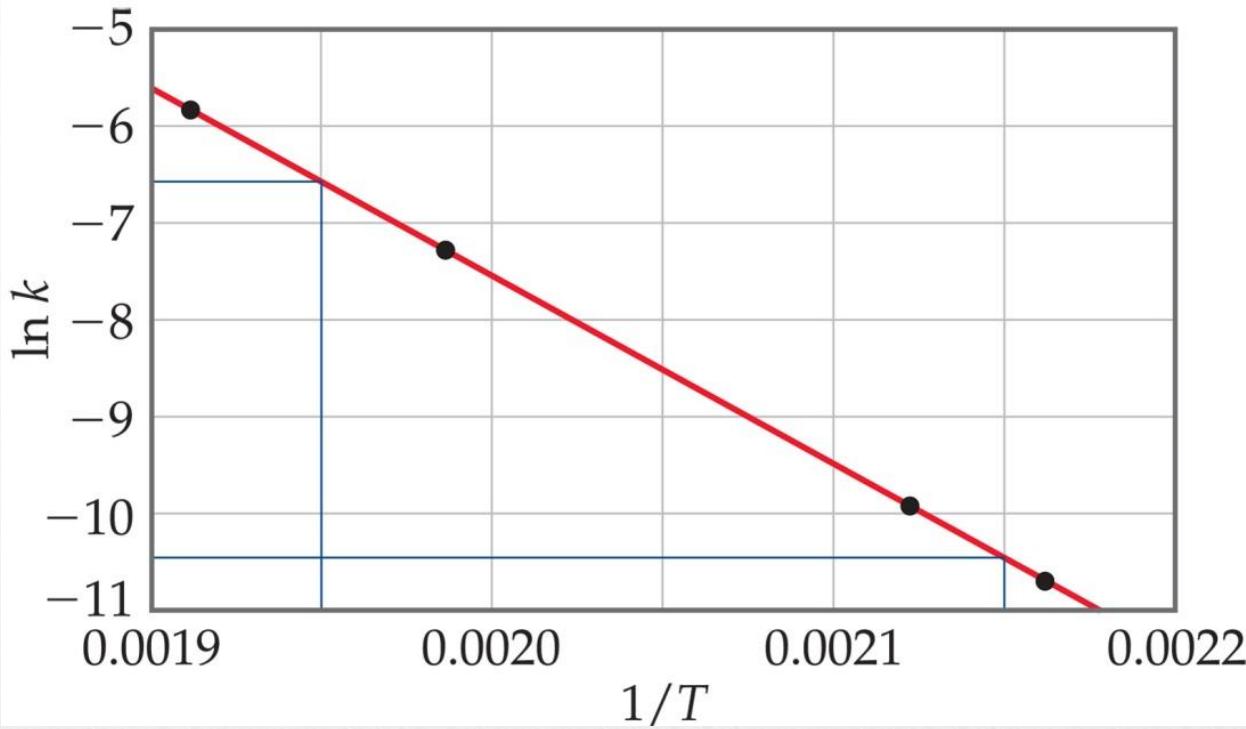
- Simplifies solving for E_a
- $-E_a/R$ is the slope when $\ln(k)$ is plotted against $(1/T)$
- $\ln(A)$ is the y-intercept
- Linear regression analysis of a table of $\ln(k)$ vs. $(1/T)$ can quickly yield a slope
- $E_a = -R(\text{slope})$

Arrhenius Equation

Taking the natural logarithm of both sides, the equation becomes.

$$\ln k = -\frac{E_a}{R} \left(\frac{1}{T} \right) + \ln A$$

$$y = m x + b$$



Therefore, if k is determined experimentally at several temperatures, E_a can be calculated from the slope of a plot of $\ln k$ vs. $\frac{1}{T}$.

Catalysis

Catalyst:

A substance that speeds up a reaction without being consumed

Enzyme:

A large molecule (usually a protein) that catalyzes biological reactions.

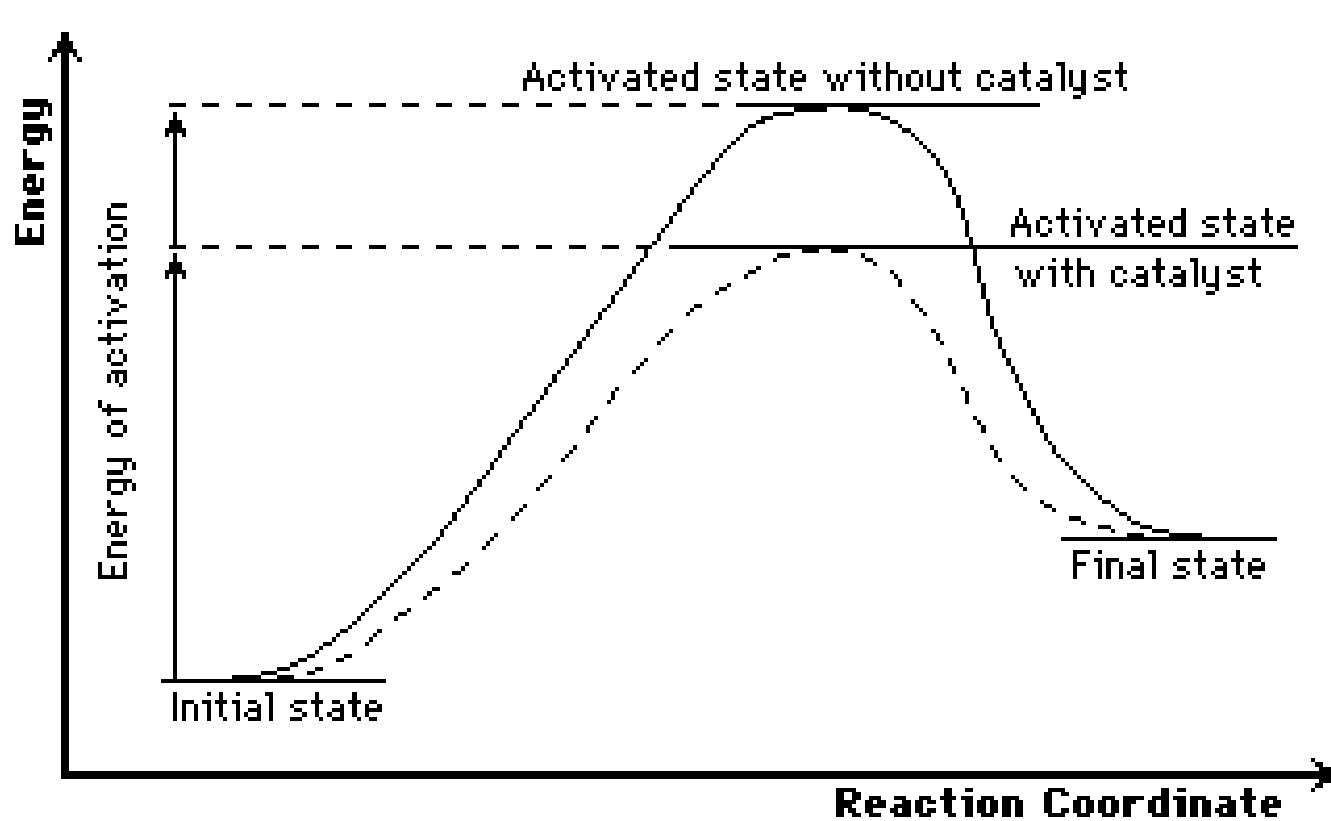
Homogeneous catalyst:

Present in the same phase as the reacting molecules.

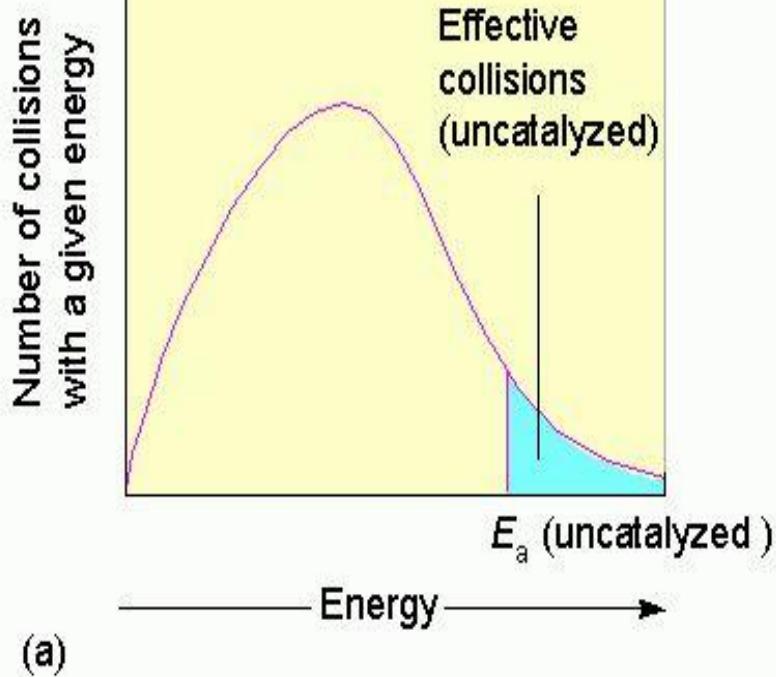
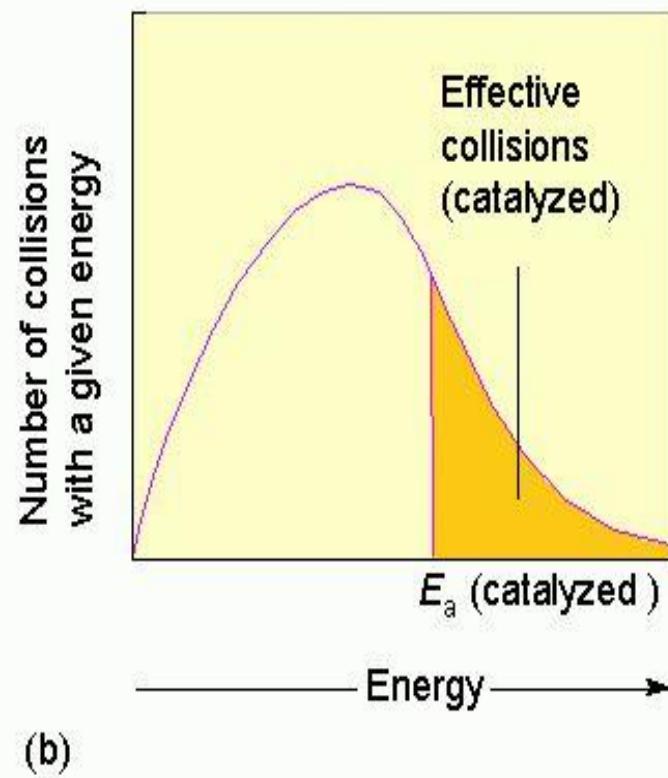
Heterogeneous catalyst:

Present in a different phase than the reacting molecules.

Lowering of Activation Energy by a Catalyst



Catalysts Increase the Number of Effective Collisions



Determining the Activation Energy

One can determine the activation energy of a reaction by measuring the rate constant at two temperatures:

Writing the Arrhenius equation for each temperature:

$$\ln k_1 = -\frac{E_a}{RT_1} + \ln A \quad \ln k_2 = -\frac{E_a}{RT_2} + \ln A$$

If one takes the natural log of the ratio of k_2 over k_1 we find that:

$$\ln\left(\frac{k_2}{k_1}\right) = \ln k_2 - \ln k_1$$

Substituting in the values for E_a into the equation:

$$\ln k_2 - \ln k_1 = \left(-\frac{E_a}{RT_2} + \ln A \right) - \left(-\frac{E_a}{RT_1} + \ln A \right)$$

Lookie what happens...

Knowing the rate at two temps yields the rate constant.

or

$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

Knowing the E_a and the rate constant at one temp allows one to find $k(T_2)$

Example: The activation energy of a first order reaction is 50.2 kJ/mol at 25°C. At what temperature will the rate constant double?

$$(1) \quad k_2 = 2k_1$$

$$(2) \quad \ln\left(\frac{k_2}{k_1}\right) = \ln\left(\frac{2k_1}{k_1}\right) = \ln(2) = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

$$(3) \quad \frac{E_a}{R} = \frac{50.2 \text{ kJ/mol} \times \frac{10^3 \text{ J}}{1 \text{ kJ}}}{8.314 \frac{\text{J}}{\text{mol} \cdot \text{K}}} = 6.04 \times 10^3 \text{ K}$$

$$(4) \quad \ln(2) = 0.693 = 6.04 \times 10^3 \text{ K} \times \left(\frac{1}{298 \text{ K}} - \frac{1}{T_2} \right)$$

A 10°C change of temperature doubles the rate!!

$$(5) \quad \frac{1}{T_2} = 3.24 \times 10^{-3} \text{ K}^{-1} \quad \longrightarrow \quad T_2 = 308 \text{ K}$$

Example/ Using the data for 25C° and 65C° in table, calculate Ea, the energy of activation for the decomposition of Nitrogen pentoxide N₂O₅.

$$25+273 = 298 \text{ k}$$

$$65+273 = 338 \text{ k}$$

$$K_1 = 3.46 \times 10^{-5}$$

$$K_2 = 4.87 \times 10^{-3}$$

$$\log \frac{K_2}{K_1} = \frac{E_a}{2.303R} * \frac{T_2 - T_1}{T_1 - T_2}$$

$$\log \frac{4.87 \times 10^{-3}}{3.46 \times 10^{-5}} \frac{E_a}{2.303R} \frac{338 - 298}{338 - 298}$$

$$E_a = 24.800 \text{ cal}$$

Thank
you

