© Electrical Engineering Technical College - Department of Computer Engineering Techniques

MODULE DESCRIPTION FORM

duwlydl Baledl Cauo g 3 9o

Module Information

:Lb.n\‘).ﬂ\ saldll C"_\\AJSM

Module Title Obj ect Oriented P rog ramming Module Delivery
Module Type S X Theory
Module Code UOMUO0202031 O Lecture
ECTS Credits 6 X Lab

X Tutorial
SWL (hr/sem) 150 O Practical

O Seminar
Module Level 2 Semester of Delivery 3
Administering Department CET College ETC
Module Leader | Murtada Abbas e-mail murtada.dohan@uomus.edu.iq
Module Leader’s Acad. Title Module Leader’s Qualification
Module Tutor e-mail
Peer Reviewer Name e-mail
SDCJ::tiﬁc Committee Approval 29/10/2023 Version Number | 1.0

Relation with other Modules

AN Al ) ol gall ae A8

Prerequisite module

None

Semester 0

Co-requisites module

None

Semester




© Electrical Engineering Technical College - Department of Computer Engineering Techniques

Module Aims, Learning Outcomes and Indicative Contents

LolanYl lgisally phasll 5L g Ayl Bl LIl

Module Aims

dulyud) Baledl Colual

Understand and apply object-oriented programming principles.

Design and implement object-oriented solutions to programming problems.
Utilize C++ libraries and frameworks for application development.
Implement data abstraction and encapsulation for secure and efficient code.
Plan and execute testing strategies for reliable programs.

Debug and optimize program performance for efficient execution.

oOukwNE

Module Learning
Outcomes

5alall @ladl ol e
EWINY]

1. Demonstrate a clear understanding of object-oriented programming
principles, including inheritance, polymorphism, and encapsulation.

2. Design and implement classes and objects to represent real-world entities,
applying appropriate inheritance and encapsulation.

3. Utilize C++ libraries and frameworks effectively to develop robust and
scalable applications.

4. Implement data abstraction and encapsulation techniques to ensure secure
and efficient code.

5. Plan and execute comprehensive testing strategies to validate the
functionality and reliability of object-oriented programs.

6. Identify and debug program errors using appropriate tools and techniques,
enhancing program robustness.

7. Evaluate and optimize program performance through code analysis and
profiling, improving execution efficiency.

8. Collaborate effectively with peers to develop object-oriented solutions to
complex programming challenges.

9. Apply exception handling techniques to handle errors and ensure program
stability.

10. Demonstrate proficiency in utilizing debugging tools to identify and fix
program errors.

11. Apply object-oriented design patterns and principles to analyze and solve
programming problems.

12. Evaluate the efficiency and effectiveness of object-oriented solutions through
critical analysis and optimization techniques.

Indicative Contents
doolinyY wbgisall

Indicative content includes the following.

Part A: Introduction to Object-Oriented Programming (8 hours)

- Overview of object-oriented programming principles and concepts
- Classes, objects, and their relationships

- Inheritance and polymorphism




© Electrical Engineering Technical College - Department of Computer Engineering Techniques

- Encapsulation and data abstraction

Part B: Designing Object-Oriented Solutions (12 hours)

- Problem analysis and requirements gathering
- Identifying classes and objects

- Object-oriented design principles and patterns
- Designing class hierarchies and relationships

- UML diagrams for visualizing designs

Part C: Implementing Object-Oriented Solutions in C++ (20 hours)

- C++ language essentials for object-oriented programming
- Implementing classes and objects in C++

- Inheritance and polymorphism in C++

- Handling exceptions in C++

- Utilizing C++ libraries and frameworks

Part D: Testing and Debugging Object-Oriented Programs (12 hours)

- Testing methodologies and strategies

- Unit testing and test-driven development
- Integration testing and system testing

- Debugging techniques and tools

- Error handling and exception management

Part E: Optimization and Performance Analysis (8 hours)

- Profiling and performance analysis tools
- Identifying performance bottlenecks
- Optimization techniques for object-oriented programs

- Memory management and resource optimization

Part F: Collaborative Object-Oriented Programming (8 hours)

- Collaborative development environments and version control systems
- Code reviews and best practices
- Pair programming and team collaboration

- Communication and coordination in object-oriented projects

Part G: Project Work and Application Development (20 hours)

- Applying object-oriented principles and techniques in a practical project
- Developing a complete application using C++ and object-oriented design
- Project planning, implementation, and documentation

- Integration of various modules and testing the application




© Electrical Engineering Technical College - Department of Computer Engineering Techniques

Learning and Teaching Strategies

sl 5 abeil) lail i

Strategies

The learning and teaching strategies for the Object-Oriented Programming Course
include lectures to introduce concepts, practical exercises for hands-on
programming, group discussions for collaboration, case studies for real-world
application, code reviews for feedback, practical projects to apply knowledge, guest
lectures for industry insights, online resources for self-study, assessments to evaluate
understanding, and presentations to enhance communication skills. These strategies
aim to actively engage students, develop their programming abilities, and foster a
deep understanding of object-oriented programming principles.

Student Workload (SWL)

Structured SWL (h/sem) 29 Structured SWL (h/w) 5 26
el I CIlal) alasiall guyll) Jael) e gl (I latiall (ol Jazsl '
Unstructured SWL (h/sem) - Unstructured SWL (h/w) 473
i)l I CIlall elaiall e guhdl Jodl be gl Il elatiall e (ool Jodl '

Total SWL (h/sem)
Jradl] I3 IUall S gyl Jasd

150

Module Evaluation
:\ﬁ*“\‘)ﬂ\ 3aldl) (u:\s.a

Time/Nu Relevant Learning
. Weight (Marks) Week Due Outcome

Quizzes 2 10% (5) 5,10 LO#1-4,LO#1-9
Formative Assignments 2 10% (10) 4,11 LO#1-3,LO#4-10
assessment Projects / Lab. 1 10% (10) Continuous | LO#1-12

Report 1 10% (10) 11 LO#1-10
Summative Midterm Exam 2 hrs. 10% (10) 7 LO#1-6
assessment Final Exam 4hrs. 50% (50) 16 All
Total assessment 100% (100 Marks)




© Electrical Engineering Technical College - Department of Computer Engineering Techniques

Delivery Plan (Weekly Syllabus)
Lg)L.J\ ‘.5:;}.,\»:‘)1\ GL@.LJ\

Material Covered

Week 1 Introduction to Object-Oriented Programming

Week 2 Classes, Objects, and Relationships

Week 3 Inheritance and Polymorphism principles

Week 4 Encapsulation and Data Abstraction

Week 5 Problem Analysis and Requirements Gathering

Week 6 Object-Oriented Design Principles and Patterns

Week 7 Mid-term Exam

Week 8 C++ Language Essentials and Advanced Topics

Week 9 Implementing Classes and Objects in C++

Week 10 | Implementing Inheritance and Polymorphism in C++

Week 11 | Handling Exceptions in C++

Week 12 | Utilizing C++ Libraries and Frameworks

Week 13 | Testing Methodologies and Strategies in C++

Week 14 | Debugging Techniques and Tools in C++

Week 15 | Optimization and Performance Analysis in C++

Week 16 | Preparatory week before the final Exam




© Electrical Engineering Technical College - Department of Computer Engineering Techniques

Delivery Plan (Weekly Lab. Syllabus)
DAl e gu) el

Material Covered
Week1 | ntroduction to C++ programming environment and basic syntax.
Week 2 Implementing simple classes and objects.
Week 3 Experimenting with inheritance and polymorphism in C++.
Week 4 Implementing data abstraction and encapsulation.
Week 5 Problem-solving exercise using object-oriented design principles and patterns.
Week 6 Utilizing C++ libraries and frameworks for application development.
Week 7 Midterm Exam (No lab session).
Week 8 Implementing exception handling techniques in C++.
Week 9 Testing and debugging strategies for object-oriented programs.
Week 10 Profiling and performance analysis of C++ programs.
Week 11 | Code optimization techniques for object-oriented programming.
Week 12 | Collaborative programming exercise utilizing version control systems.
Week 13 | Implementing advanced data structures using object-oriented techniques.
Week 14 | Project work and application development using object-oriented concepts.
Week 15 review and practice exercises, Preparatory for Final Exam.
Week 16 | Final Exam (No lab session).
Learning and Teaching Resources
ol (—Jaﬂ\ laa
Text Available in the
Library?

Required Texts "Object-Oriented Programming in C++" by Robert Lafore

"Design Patterns: Elements of Reusable Object-Oriented
Recommended Texts Software" by Erich Gamma, Richard Helm, Ralph Johnson,

and John Vlissides
Websites https://www.w3schools.com/cpp/cpp_oop.asp




© Electrical Engineering Technical College - Department of Computer Engineering Techniques

Grading Scheme

Group Grade BERC:i Marks (%) | Definition

A - Excellent sl 90 - 100 Outstanding Performance

B - Very Good [SENVES 80 -89 Above average with some errors
(S:(;:fefgoc)iroup C - Good RVES 70-79 Sound work with notable errors

D - Satisfactory Jawgie 60 - 69 Fair but with major shortcomings

E - Sufficient Jgsdo 50 -59 Work meets minimum criteria
Fail Group FX - Fail (Alaadl 08) Cwly | (45-49) More work required but credit awarded
(0-49) F - Fail sl (0-44) Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a
mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT
to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the
automatic rounding outlined above.




